
AMIS: Software Defined Privacy-Preserving
Measurement Instrument and Services

Yan Luo, Univ. of Massachusetts Lowell
Cody Bumgardner, Univ. of Kentucky
Gabriel Ghinita, Univ. of Massachusetts Boston
Michael McGarry, Univ. of Texas El Paso

In collaboration with StarLight/iCAIR and FIU/AMPATH

Supported by the US National Science Foundation
(No.1450937,1450975,1450996,1450997)

Major objectives:
Measurement capability: A whitebox instrument with
scalable processing capabilities on network flows at up
to 100Gbps line rate;
Programmable: Software defined measurement
framework that allows creating measurement tasks and
making queries;
Privacy preserving: privacy oriented algorithms to report
measurement results while protecting user flow privacy;
Analytics: Analysis and visualization of measurement
data to provide insights to network operations.

Overview of IRNC AMIS Project

2

Measurement substrate
• Distributed instruments + Hadoop data analytics

engine
• Programmable measurement instrument box
• Optimized hw/sw system for up to 100Gbps
• Flexible to implement and deploy new functions
• Support differential privacy on flow analysis

Measurement Control plane
• Equery language to compose measurement

functions
• Web interface for user interaction and data

visualization

Overview of AMIS Framework

3

Why Another Measurement Box?
A Comparison with PerfSONAR

4

Differences AMIS PerfSONAR
Measurement
method

Passive
(do not generate
traffic)

Active
(generate traffic)

Real-time Measure flows in
real-time

Has no visibility of
real-time flows

Flow granularity Yes No
100Gbps Yes Yes
Privacy preserving Yes No
Support event driven
measurement

Yes ?

Current Deployment of IRNC AMIS

5

As of June 2018

A whitebox and open source software
• Multicore x86 server with 100Gbps NICs (Mellanox)
• DPDK + AMIS software modules
• Measurement functions an run in a VM

Measurement functions
• Top 10 flows
• Netflow generation
• Link throughput
• TCP window size
• Packet tracing
• new ones can be created

Measurement Instrument and Functions

6

Overview of AMIS Software Framework

7

Plugin
Management

Web-based
Network Data

Visualization and
Analytics

Privacy
Protection

AMIS
Measurement

Functions

UTEP
1. Configure and manage

measurement tasks
2. Annotate instrument data

with auxiliary data for
analytics

3. Provide data visualization and
analytics to support network
management

UKY
1. Config management
2. Dispactch mtask to AMIS nodes
3. Query processing on netflow

records

UMB
1. Syntactic Privacy
2. Differential Privacy with

BigData tools

UML
1. packet loss detection
2. packet count
3. flow volume calculation
4. netflow generation

An event driven declarative language
Language spec: SQL like with network oriented
primitives

Equery Language for Network Measurement

8

Query q := Select(h, s, f(h, s))

Where(p)

Groupby(h, s)

When(e)

Start(t)

Within(i)

Every(i)

Pkt hdr h := src ip | dst ip | src pt...

Switch s := sw id | pt in | pt out...

| q id | q in | q out | q size...

Agg f(h, s) := function of h, s (§??)

Event e := (q : g(q.h, q.s, q.f) ÛÙ threshold) | (q : true)

Time t := start time

Interval i := integer in s or ms

Predicate p := ((h | s | f) ÛÙ value) | p&p | (p | p) |≥ p

Optr ÛÙ := >|<|>=|<=|≥=

Fig. 2. Measurement query language syntax.

s, as well as the aggregated fields, f(h, s), (e.g. COUNT,
SUM and customized aggregation fields). More details are
introduced in §III-B.
Where: A Where(p) clause applies the predicate p to
filter the query results. Only those packets satisfying the
predicate p will be analyzed for statistical purposes. The
basic predicate uses the syntax ((h | s | f) ÛÙ value)
to test the selected measurement field. In this paper, a
test on an aggregated field (f ÛÙ value) actually imposes
a test on a data plane state. “ÛÙ” is a series of opera-
tors where “≥=” indicates “unequal”. More complicated
filtering predicates can be constructed using natural set-
theory operations such as intersection (p&p), union (p|p)
and complementation (≥ p).
Groupby: A Groupby(h, s) clause can be used in a
“Select” statement to collect measurement data across
multiple records and group the results by one or more
columns (h, s). The “Groupby” clause is often combined
with aggregate functions (§??).
When: A When(e) clause is employed to impose a trigger
on a query. A query driven solely by a “When” clause will
be executed once event e occurs (§III-C).
Others: A Start(t) clause indicates that the start time of
the submitted query is t (in date time format). The default
value is the time when the query is submitted. A Within(i)
clause specifies the maximum execution time for a query.
An Every(i) clause groups packets that arrive within the
same time window, where i can be specified in seconds or
microseconds. In turn, the results will be returned every
i seconds (or microseconds). The “Every(i)” clause is also
used to express a PE in a query.

B. Measurable Fields
There are three categories of measurable fields: packet

fields, switch fields and aggregated fields. As shown in
Fig. 2, all three categories can be applied for querying
target packets as in a “Select” statement, or filtering target
packets with “Where”.

Packet Fields. Packets traversing a network can be
parsed by network devices to extract the header fields,
including the source IP, destination IP, source port, des-
tination port, source MAC, destination MAC, etc. Based
on the primary header fields, network operators can query
per-packet and per-flow information.
Switch Fields. In addition to the packet fields, net-
work operators are often interested to know: what is
the bandwidth utilization of a network link? Where does
packet loss happen? What are the one-hop and end-to-end
latency? All these questions involve querying the status
and performance along a specified link or path. In this
paper, we use sw id to identify a switch or a router while
pt in, pt out are used to specify the in-port and out-port
of a packet traversing a switch respectively. A link l can be
represented by: l , (sw id : pt out æ sw id : pt in).

In our design, we employ the queue metadata [7] tech-
nique to manipulate switch fields. The metadata q id
identifies a specific queue on a specific switch at which
the current packet is observed. The metadata q in and
q out are timestamps corresponding to the arrival and
departure of the packet with respect to a queue. We let
q out = Œ in the event that a packet is dropped from a
queue. The field q size is the queue length seen by the
packet when it is enqueued.
Aggregated Fields. Aggregated fields are applied to
obtain statistical values on a group of packets that satisfy
some pre-defined conditions. Each aggregated field is as-
sociated with one aggregate function. In order to calculate
the required aggregated field, the aggregate function is
used to perform operations across the packets filtered
by the “Where” clause, or by the entire packets when
“Where” is omitted. We provide 5 basic built-in aggregate
functions similar to SQL languages: COUNT, SUM,
MIN, MAX and AVG.

In the sophisticated network measurement context, the
built-in aggregate functions are far less than enough.
EQuery therefore provides customizable aggregate func-
tions - detailed syntax is shown below.
ex œ Expr := v | h | s | f | ęx
x œ Pred := [h,s,f] ÛÙ ex #field test

st[ex] ÛÙ ex #state test

a œ Action := st[ex] += ex #state-

st[ex] -= ex #modification

ÛÙ œ Optr := =|>|<|>=|<=|≥= #operators

We generalize the definition of an aggregate function as
follows.
create aggregate agg name(agg st, [h, s]):

if x then a1 else a2

C. Triggering a Subsequent Query
Event e. A PE is indicated by the “Every” clause whereas
a CE is more complicated. Throughout the remainder of
this paper, we refer to an Event as a CE unless specified
otherwise. An event often indicates a network situation
that may require further actions, or in the context of

Example

EQuery Demo

9

Database

http://localhost:8000

Query Result

submit

EQuery GUI Demo Server
(cherry.uml.edu)

EQuery Controller

NFA
Controller Mapper

Operational Network

http://localhost:8000/result

Query Result

id query string

query string
query string

(RESTful API)

qu
ery

 re
su

lts query results
(RESTful API)

view

query query result

… …
Switch Switch Switch

http://localhost:8000/map

XXX
XXX
XXX

Query

Result

Topology

status

(RESTful API)sta
tu

s
(R

ES
Tf

ul
AP

I)

network status

EQuery Compiler

To protect privacy, Differential Privacy adds Laplace
noise to results
We do show ASNs but protect individual flows

Good accuracy obtained, even for strong privacy (e=0.2):
• 100% precision and recall for Top10-communicating ASN

• Relative error below 10% for most packet and byte counts

Privacy Preserving Query

10

Differential privacy algorithms
Hbase Hadoop cluster

Privacy Preserving Modules

11

Sanitized
Results

HBase Repository

Differential
Privacy
Engine

Hadoop
Analytics

Privacy Module

Sensitive

Sanitized

Query Optimizer

Rabbit MQ
Raw Flows

Researcher

Network
Engineer

Student

Traffic Matrix Visualization

12

