AMIS: Software Defined Privacy-Preserving Measurement Instrument and Services

Yan Luo, Univ. of Massachusetts Lowell
Cody Bumgardner, Univ. of Kentucky
Gabriel Ghinita, Univ. of Massachusetts Boston
Michael McGarry, Univ. of Texas El Paso

In collaboration with StarLight/iCAIR and FIU/AMPATH

Supported by the US National Science Foundation (No.1450937,1450975,1450996,1450997)

Overview of IRNC AMIS Project

Major objectives:

- Measurement capability: A whitebox instrument with scalable processing capabilities on network flows at up to 100Gbps line rate;
- Programmable: Software defined measurement framework that allows creating measurement tasks and making queries;
- Privacy preserving: privacy oriented algorithms to report measurement results while protecting user flow privacy;
- <u>Analytics</u>: Analysis and visualization of measurement data to provide insights to network operations.

Overview of AMIS Framework

Measurement substrate

- Distributed instruments + Hadoop data analytics engine
- Programmable measurement instrument box
- Optimized hw/sw system for up to 100Gbps
- Flexible to implement and deploy new functions
- Support differential privacy on flow analysis
- Measurement Control plane
 - Equery language to compose measurement functions
 - Web interface for user interaction and data visualization

Why Another Measurement Box?

A Comparison with PerfSONAR

Differences	AMIS	PerfSONAR
Measurement method	Passive (do not generate traffic)	Active (generate traffic)
Real-time	Measure flows in real-time	Has no visibility of real-time flows
Flow granularity	Yes	No
100Gbps	Yes	Yes
Privacy preserving	Yes	No
Support event driven measurement	Yes	?

Current Deployment of IRNC AMIS

Measurement Instrument and Functions

A whitebox and open source software

- Multicore x86 server with 100Gbps NICs (Mellanox)
- DPDK + AMIS software modules
- Measurement functions an run in a VM
- Measurement functions
 - Top 10 flows
 - Netflow generation
 - Link throughput
 - TCP window size
 - Packet tracing
 - new ones can be created

Overview of AMIS Software Framework

7

Equery Language for Network Measurement

- An event driven declarative language
- Language spec: SQL like with network oriented primitives

Query q	:=	$\operatorname{Select}(h,s,f(h,s))$
		Where(p)
		$\operatorname{Groupby}(h,s)$
		$\mathrm{When}(e)$
		$\operatorname{Start}(t)$
		$\operatorname{Within}(i)$
		Every(i)
Pkt hdr h	:=	$src_ip \mid dst_ip \mid src_pt$
Switch s	:=	$sw_id \mid pt_in \mid pt_out$
		$ q_id q_in q_out q_size$
${\rm Agg}\;f(h,s)$:=	function of h, s (§??)
Event e	:=	$(q:g(q.h,q.s,q.f)\bowtie \text{threshold}) \mid (q:true)$
Time t	:=	start time
Interval i	:=	integer in s or ms
Predicate p	:=	$((h \mid s \mid f) \bowtie \text{value}) \mid p\&p \mid (p \mid p) \mid \sim p$
$Optr \bowtie$:=	> < >= <= ~=

Example

EQuery Query EQuary Schema q1: select src_addr,dst_addr,src_port,dst_port,protocol where src_addr=10.33.69.131, amis_id=uk;

Submit Query

EQuery Demo

Privacy Preserving Query

- To protect privacy, Differential Privacy adds Laplace noise to results
- We do show ASNs but protect individual flows
- Good accuracy obtained, even for strong privacy (ε =0.2):
 - 100% precision and recall for Top10-communicating ASN

Privacy Preserving Modules

- Differential privacy algorithms
- Hbase Hadoop cluster

Traffic Matrix Visualization

