
AmLight's SDN Looking Glass: Centralizing SDN monitoring for troubleshooting

Jeronimo Bezerra <jab@amlight.net> Florida International University Antonio Francisco <antonio@amlight.net> Academic Network of Sao Paulo

Outline

Why a tool just for troubleshooting?Shouldn't the SDN controller take care of it?

AmLight: a Distributed Academic Exchange Point

- Production SDN Infrastructure since Aug-2014
- Collaboration: FIU, NSF, ANSP, RNP, Clara, REUNA and AURA
- Includes two GLIF GOLEs: AMPATH (Miami) and SouthernLight (Brazil)
 - 4 x NAPs: Brazil(2), Chile and Panama
 - Multiple 10G and 100G links
 - 2000+ institutions connected
- Carries Academic and Commercial traffic
- Control Plane: OpenFlow 1.0 (with an OF1.3 overlay)
- Network Programmability/Slicing
 - OESS/NOX, ONOS, Kytos and Ryu
- NSI-enabled
- Currently, operating with more than a 1000 flow entries

SDN vs. Troubleshooting

Why troubleshooting a SDN network is so complex?

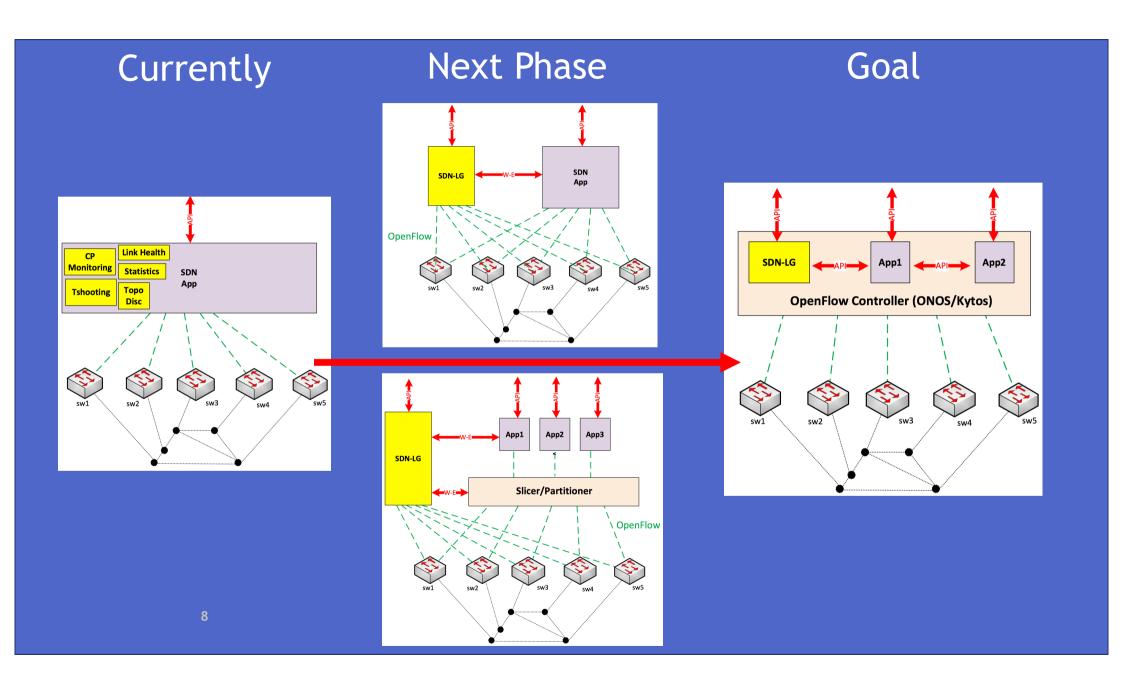
- OpenFlow has minimum support for troubleshooting
 - For instance, there are no special/reserved flow cookies
- Vendors assume that their job is done once OpenFlow agents are (partially) implemented
 - No passive OpenFlow connection supported by some vendors
 - No sFlow/Netflow supported for "OpenFlow" entries in some vendors
 - Not all flow entries have reliable counters
 - Lack of visibility of what is happening inside the datapath's OpenFlow agent
- Current SDN applications only consider network provisioning
 - Need for troubleshooting features only appears once things start falling apart

SDN vs. Troubleshooting (2)

- Most current SDN applications are developed only by software developers
 - Network Engineers could help with the monitoring/troubleshooting specification
- Many academic papers suggesting solutions that do not fit in production
 - Highly dependent on the controller for actions
 - Heuristic and Machine Learning per unknown packet do not scale
 - Most solutions consider using Table 0 without addressing the table shift with the "main" SDN app
- SDN concept itself makes things harder sometimes
 - Because datapaths have no intelligence at all, controllers always have to be involved
 - Creating scalability and timing issues
 - Making controllers more complex to operate and maintain

SDN vs. Troubleshooting vs. Production Networks

- Troubleshooting production networks has different requirements
 - Has to be agile, least disruptive as possible and needs historical data
 - Tools have to be handy
- More than ever, deep knowledge of the hardware and software platforms are required:
 - Use of "hidden" commands and application logs become part of your routine
- A "premium" support contract with hardware vendor is desired
 - Going through the Level 2 TAC team every time will lower your will to live and increase the network recovery time



Our Vision

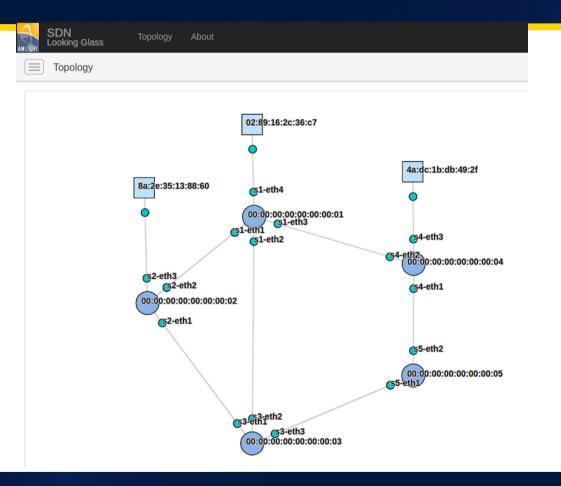
- A single side-application for troubleshooting makes more sense:
 - Pros:
 - Frees the provisioning developers to focus on provisioning
 - Avoids duplicated data when multiple SDN applications are running in production
 - Eases auditing
 - Centralizes all troubleshooting data, making it easier to correlate events
 - OpenFlow agent, NMS, SDN app, slicer and sniffer's data are processed by just one entity
 - Cons:
 - Parallel applications is still a challenge
 - Not OpenFlow Equal/Equal support by some vendors and OpenFlow controllers
 - Some apps delete flows they don't recognize (!)
 - No East-West protocol standardized
 - Each SDN app will have to be customized to gather status and counters from a remote app
 - Another application to maintain

Americas Lightpaths Express & Protect

AmLight SDN Looking Glass

Central point for SDN troubleshooting:

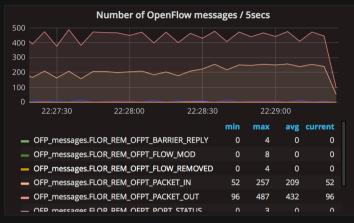
- Centralizes all monitoring and troubleshooting information being slice/app-independent
- Stores all statistical data (flow, ports, etc.) and OpenFlow messages into a persistent backend
- Tracks real time OpenFlow control plane messages
- Tracks non-OpenFlow information (for instance, CPU utilization)
- Runs trace paths ("traceroute"), including inter-domain
- Sends alerts via e-mail and Slack
- Takes network snapshots: save the network state for future troubleshooting and capacity planning
- Provide REST to be used by external SDN apps, auditing tools and external NMS
- Supports active and passive topology discovery (LLDP or input file)
- Development team: FIU and ANSP
- Collaboration with State University of Sao Paulo / Kytos developers
- Launch date: Internet2 Technology Exchange 2017 (October 2017) version 0.1

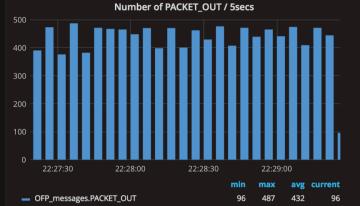

Americas Liabtraths Express & Protect

AmLight SDN Looking Glass [2]

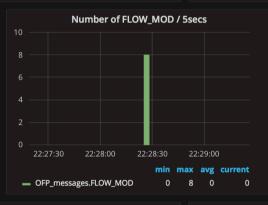
- Developed in Python 3.6
- Leverages the *python-openflow* library
- Built as a Napp on top of Kytos SDN framework
- Uses Influxdb, Mongodb and MySQL for persistence
- Uses Grafana and JavaScript for visualization
- Supports both OpenFlow 1.0, OpenFlow 1.3 and SNMP
- Saves all control plane messages in 100MB files
- Works with OESS's Forwarding Verification module
- Inter-domain trace using our own protocol (soon with NSI)
- Open Source/GPL

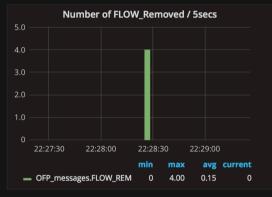


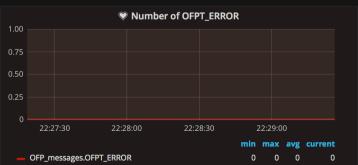

Topology Discovery

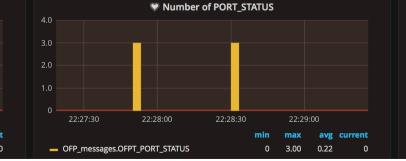


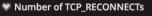
🌀 🗸 🎆 SDN-LG 🗸 📩 🖻 😫

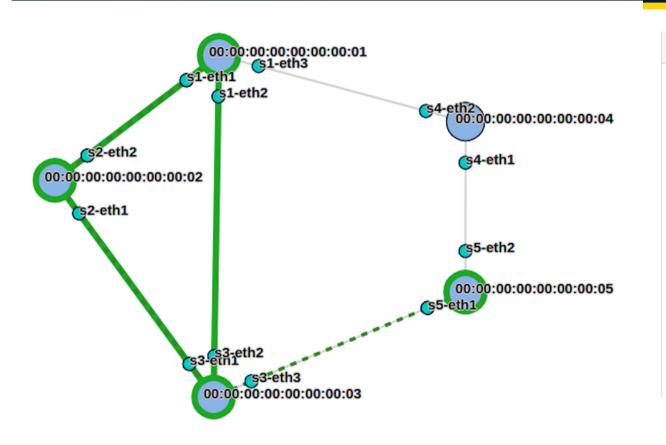








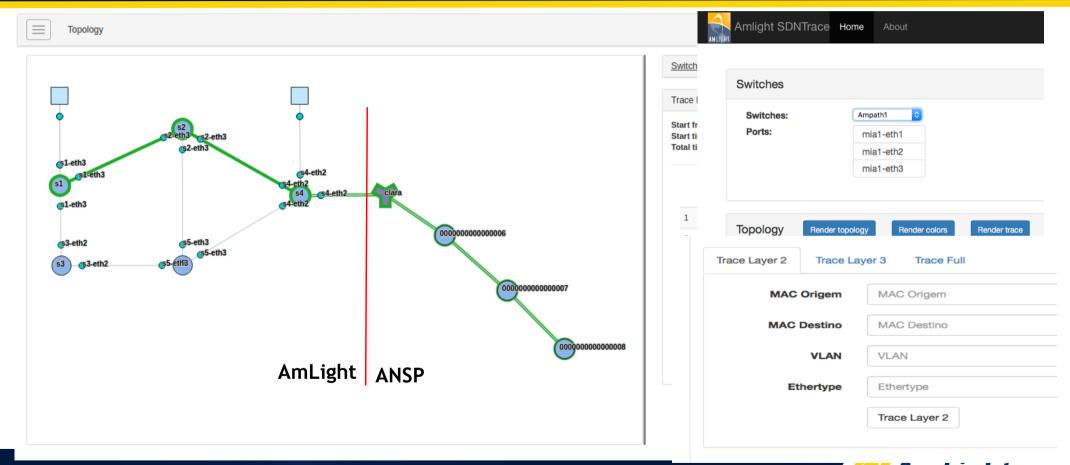




List of Flows

SDN Looking Glas	ss Top	ology Ab	out								
00:00:00:00:00:001											
in_port 🔺	cookie 🔺	priority 🔺	Match Action								
Filter 💲	Filter	Filter	vlan 🔺	dl_src 🔺	dl_dst 🔺	dl_type 🔺	type 🔺	max_l 🔺	port 🔶	vlan	
			Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter.	
	ms)	-									
	0	50001		ee:ee:ee:ee:03	00:00:00:00:00:00		action_output		65533	-	
	0	50001		ee:ee:ee:ee:04	00:00:00:00:00:00		action_output		65533	-	
	0	50001		ee:ee:ee:ee:02	00:00:00:00:00:00		action_output		65533		
▼ 4 (1 ite	em)										
4	0	32768	100	00:00:00:00:00:00	00:00:00:00:00:00		action_output		1		
•	•			•	•	•		• • • • • • • • • • • • • • • • • • • •			

Trace Path (with loop)


DP Trace Result

Start from: DPID: 00:00:00:00:00:00:01 Port:4 Start time: 2017-09-22 17:06:40.585510 Total time: 0:00:02.116426

	Switch/DPID	Incoming Port	Time
1	00:00:00:00:00:00:00:02	2	0:00:00.522604
2	00:00:00:00:00:00:00:03	1	0:00:01.051321
3	00:00:00:00:00:00:00:01	2	0:00:01.596495
4	00:00:00:00:00:00:00:02	2	0:00:02.116385
5	Trace completed with loop	. none	

Inter-domain Trace Path

15 AmLight's SDN Looking Glass: Centralizing SDN monitoring for troubleshooting - GLIF 2017

Americas Lightpaths Express & Protect

THANK YOU!

Jeronimo Bezerra <jab@amlight.net> Florida International University Antonio Francisco <antonio@amlight.net> Academic Network of Sao Paulo

