

Discovery, unconstrained by geography.

The Energy Sciences Network Update

Inder Monga, Brian Tierney ESnet

GLIF Americas September 28th, 2016

Science Data Transferred Monthly by ESnet

▼ July 2016

	Bytes	Percent of Total	One Month Change	One Year Change	
OSCARS	12.32 PB	24.0%	-12.1%	+104%	Point-to-point circuits
LHCONE	18.41 PB	35.9%	+4.75%	+277%	LHCONE (T1-T1/2) traffic
Normal traffic	20.56 PB	40.1%	+7.08%	+68.1%	
Total	51.29 PB		+0.973%	+121%	1986-2016

Available at https://my.es.net/network/traffic-volume

imonga at es dot net

Overall Traffic doubled, LHCONE up 1500+% in Run 2 [January 2015 – May 2016]

Transatlantic traffic is healthy

5

10/8/16

AT THE SPEED OF SCIENCE

YEARS OF

1986-2016

21

ESnet: An exascale facility in 2021

ESnet6

- Next-generation of ESnet needs to address the next ten years of science requirements
- Three key design goals
 - Capacity
 - Handle exponential traffic growth
 - Ex. 1 Tbps from SLAC NERSC
 - Reliability and Resiliency
 - Distributed science facilities, computing, data scientists depend on the network for their science research to work
 - Cyber-resiliency protection against increasing level of cyber-security attacks
 - Cost
 - Exponential data growth with near flat budgets
- Current Status
 - Deep within R&D cycle to explore all technology alternatives, build prototypes and engage scientists for future requirements

ESnet's 100G SDN Testbed – significant footprint growth and dedicated bandwidth. Focused on ESnet6 testing for FY17

ESnet continues to build a strong software development team

MyESnet Portal

A data-driven website for displaying information and visualizations about ESnet, its sites and community.

AT THE SPEED OF SCIENCE

Open Source

Good news everyone, it's all open source!

- <u>http://software.es.net/pond/</u>
- <u>http://software.es.net/react-timeseries-charts/</u>
- <u>http://software.es.net/react-network-diagrams/</u>

Motivation

- Develop a common toolkit for visualizing networks
- Lower barrier to entry
- Allow people to use what we've built so they don't have to build their own
- Encourage others to share their visualizations
- Give back to the community

Strong research collaborations helps explore future network architectures with an eye towards end-to-end

SENSE: SDN for End-to-end Networked Sc

Inder Monga [Lead-PI] (ESnet), Phil Demar (FNA Linda Winkler (ANL), Tom Lehman (UMD/MA) Mar 2016 – Feb 201

Goal

 Leverage the emerging Software Defined Network (SDN) ca to-end, science networking architecture friendly to data-inte applications

Collaborators: FERMI, ANL, Caltech, UMD/ Max, NERSC, ESnet

Vision: Enable National Labs and Universities to request and provision end-toend intelligent network services for their application workflows

Lead PI: Inder Monga

Impacts

- Present geographically distributed resources (datacenters, instruments, etc.) as components of a local facility
- Simplifies complex massive datasets distribution with coordinated, multi-domain, smart and secure services
- Enable seamless application-network interaction for new near real-time distributed computing and data analytics

SENSE SDN Control Plane Architecture for End-to-End Orchestration

Figure 1. SENOS End-to-End Orchestration

Networking Update: FY16

Project Updates

Major Projects Update....

- Networking team executing on average of 60+ active projects at any given time
- Completed Amazon Web Services (AWS) Direct Connect pilot
- Completed 400G study, validating next-gen ROADM technology, flexible (gridless), colorless mux/ demux
- Capacity Planning process maturing-driving backbone upgrade priorities
- Migrating Equinix peering from 10G to 100G
- Thirteen university CMS or ATLAS connections completed

Organization Update....

- Networking reorganization in March 2016, integrated into one organization with distinct focus on planning, engineering and operational enhancements
- Patrick Dorn as acting Group Lead for Network engineering
- New hires: Paul Wefel, Dale Carder, Jackson Gor, Indira Kassymkhanova

On the Horizon....

- Long Island MAN resilient fiber connection
- Process enhancements and operational efficiency for Network Operations center
- ESnet6-technology investigation, research and pilots
- Change Management

Recent Press Release

- Berkeley Lab Collaboration Enhances Optical Chip Design Process
 - http://www.es.net/news-and-publications/esnet-news/
- "Computer scientists and mathematicians from the LBL Computing Sciences organization worked with engineers at Ciena, a leading networking company, to speed up the process by which Ciena validates the design of its ASIC chips. The collaboration grew out of the existing relationship between Ciena, a pioneer in high-bandwidth optical transport technology, and the DOE's Energy Sciences Network (ESnet), which uses Ciena products to support its high-speed network."

