
 #ict-pristine

RINA: Recursive InterNetwork Architecture
Last advances from the PRISTINE project

Leonardo Bergesio <leonardo.bergesio@i2cat.net>
 on behalf of
 The PRISTINE consortium

RINA INTRODUCTION

2

1

 #ict-pristine

RINA higlights

• Network architecture resulting from a fundamental theory of
computer networking

• Networking is InterProcess Communication (IPC) and only IPC.
Unifies networking and distributed computing: the network is a
distributed application that provides IPC

• There is a single type of layer with programmable functions, that
repeats as many times as needed by the network designers

• All layers provide the same service: a communication instance
(flow) to two or more application instances, with certain
characteristics (delay, loss, in-order-delivery, etc)

• There are only 3 types of systems: hosts, interior and border routers.
No middleboxes (firewalls, NATs, etc) are needed

• Deploy it over, under and next to current networking technologies

3

1

2

3

4

 #ict-pristine

5

6

From here …

4

Host
Enterprise router

IEEE 802.3 (Ethernet)

Enterprise router

TCP/UDP

Host

App
A

App
B

Application
 A

Sockets API

OS Sockets
Layer

1. Bind/Listen to interface and port

2. Accept incoming connections

3. Connect to a remote address/port

4. Send datagram

5. Write data (bytes) to socket

6. Read data (bytes) from socket

7. Destroy socket

IP

IEEE 802.11 (WiFi)

Carrier Ethernet
Switch

IEEE 802.1q (VLAN)

IEEE 802.1ah (PBB)

Each tech has a different
API, and all are different
from the application API

Carrier Ethernet
Switch

 #ict-pristine

To here!

5

Host

Border router Interior Router

DIF

DIF DIF

Border router

DIF
DIF

DIF

Host

App
A

App
B

Consistent
API through

layers

App A

Layer (DIF) API

IPC
Process

1. Register/Unregister App

2. Allocate/Deallocate flows

3. Write data (SDUs) to flows

4. Read data (SDUs) from flows

5. Get layer information

 #ict-pristine

Internal layer organization

6 #ict-pristine

IRATI: OPEN SOURCE RINA
IMPLEMENTATION

7

2

• … but can also be the basis of RINA-based products
– Tightly integrated with the Operating System

– Capable of being optimized for high performance

– Enables future hardware offload of some functions

– Capable of seamlessly supporting existing applications

– IP over RINA

RINA implementation goals

• Build a platform that enables RINA experimentation …

– Flexible, adaptable (host, interior router, border router)

– Modular design

– Programmable

– RINA over X (Ethernet, TCP, UDP, USB, shared memory, etc.)

– Support for native RINA applications

8

1

2

3

4

5

1

2

3

4

5

 #ict-pristine

Some decisions and tradeoffs

9

Decision Pros Cons

Linux/OS vs other
Operating systems

Adoption, Community, Stability,
Documentation, Support

Monolithic kernel (RINA/
IPC Model may be better
suited to micro-kernels)

User/kernel split
vs user-space only

IPC as a fundamental OS service,
access device drivers, hardware

offload, IP over RINA, performance

More complex
implementation and

debugging

C/C++
vs Java, Python, …

Native implementation
Portability, Skills to master

language (users)

Multiple user-space
daemons vs single one

Reliability, Isolation between IPCPs
and IPC Manager

Communication overhead,
more complex impl.

Soft-irqs/tasklets vs.
workqueues (kernel)

Minimize latency and context
switches of data going through the

“stack”

More complex kernel
locking and debugging

High-level software arch.

10

PRISTINE contributions: SDK, policies, NMS

11

Normal IPC Process
(Layer Management)

User space

IRATI stack

Kernel
Kernel IPC Manager

Normal IPC Process
(Data Transfer/Control)

Shim IPCP
over 802.1Q

Shim IPCP

for HV

Shim IPCP
TCP/UDP

IPC Process Daemon
(Layer Management)

IPC Manager Daemon

Normal IPC Process
(Data Transfer/Control)

Shim IPCP
TCP/UDP

Shim IPCP

for HV

Shim IPCP
over 802.1Q

Application

zoom in

zoom in

zoom in

Normal IPC Process
(Data Transfer/Control)

Error and Flow Control Protocol

Relaying and Multiplexing Task

SDU Protection

SDK support

R
T
T

p
o

li
c

y

T
x

 c
tr

l

p
o

li
c

y

E
C

N

p
o

li
c

y

 . . .

SDK support

F
o

rw
a

r
p

o
li

c
y

S
c

h
e

d
u

p

o
li

c
y

M
a

x
 Q

p

o
li

c
y

M
o

n
it

p

o
li

c
y

SDK support

T
T
L

p

o
li

c
y

C
R

C

p
o

li
c

y

E
n

c
ry

p

p
o

li
c

y

Normal IPC Process
(Layer Management)

RIB & RIB
Daemon

librina

Resource
allocation

Flow allocation

Enrollment

Namespace

Management

Security
Management

Routing

SDK support

A
u

th
.

p
o

li
c

y

A
c

c
.
c

tr
l

p
o

li
c

y

C
o

o
rd

p

o
li

c
y

SDK support

A
d

d
re

s
s

a

s
s

ig
n

D
ir

e
c

to
ry

re

p
li

c
a

A
d

d
re

s
s

v

a
li

d
a

t

SDK support

New flow
policy

SDK support

P
F

T
 g

e
n

p

o
li

c
y

P
u

s
h

b
a

k

n
o

ti
fy

SDK support

Enroll.
sequenc

e
SDK support

Routing
policy IPC Manager

RIB & RIB
Daemon

librina

Manageme
nt agent

(NMS DAF)
IPCM logic

Network Manager

(NMS DAF)

 #ict-pristine

Implementation status (I)
IPCP components

IRATI objectives, outcomes and lessons learned 12

IPCP component SDK Available policies / comments

CACEP Y No authentication, password-based, cryptographic (RSA keys)

SDU Protection N
On/off hardcoded default policies, no SDK support yet: CRC32
(Error Check), hopcount (TTL enforcement), AES encryption

CDAP N Google Protocol Buffers (GPB) encoding, no support for filter op

Enrollment Y Default enrollment policy based on enrollment spec

Flow Allocation Y Simple QoS-cube selection policy (just reliable or unreliable)

Namespace Mgr. Y Static addressing, fully replicated Directory Forwarding Table

Routing Y Link-state routing policy based on IS-IS

Res. Allocator Y PDU Fwding table generator policy with input from routing

EFCP Y Retx. Control policies, window-based flow control, ECN receiver

RMT Y
Multiplexing: simple FIFO, cherish/urgency. Forwarding: longest
match on dest. address, multi-path forwarding, LFA. ECN marking

Open source IRATI

13

• IRATI github side
• http://irati.github.io/stack

• Hosts code, docs, issues
• Installation guide

• Experimenters (tutorials)

• Developers (software arch)

• Mailing list for users and
developers
• irati@freelists.org

• Procedures to contribute under
discussion, doc ongoing

 #ict-pristine

RINASIM: RINA SIMULATOR

14

3

RINASim

● RINASim is independent framework implemented for OMNeT++

● Source code is publicly available on github
(https://github.com/kvetak/RINA)

● Easy issue submitting

● Fast integration of partners contribution

● Documentation is automatically generated using Doxygen

● Partners contribute via dedicated branch (fork/merge
procedure)

● New release ~every month

● Available also as an virtual-machine OVF appliance for VmWare
or VirtualBox

15 #ict-pristine

RINA Simulator Model
Main building blocks

@ictpristine 16

Main RINA Simulator model (systems and physical links)

Border
Router

Interior Router Hosts

● 1 N-level IPC
Process

● X > 2 N-1
level IPC
Processes

● 1 N-level IPC
Process

● X >= 2 N-1
level IPC
Processes

● X >= 1 N-2
level IPC
Processes

● A flexible number of
IPCPs, but not for
relaying

● X >= 1 Application
Processes

● 1 DIF Allocator

 #ict-pristine

SOME ONGOING WORK AND
RESULTS

17

4

Simplifying VM Networking with RINA

21

• No need to perform TCP/UDP checksumming since shared memory
communication is protected from corruption

– Checksumming is not actually performed by modern paravirtualized NICs
(e.g. virtio-net, xen-netfront)

• No need to implement
complex and expensive
NIC emulation.

• No need to generate
and assign MAC
addresses,

• No need to create and
configure software L2
bridges to connect VMs
and hypervisor physical
NICs together.

• Users of the shim DIF are
not restricted to the
Ethernet MTU
(1500/9000 bytes)
– Commonly bypassed

using the TCP
Segmentation
Offloading (TSO).

 #ict-pristine

Experimental results (prototype)

IRATI objectives, outcomes and lessons learned 22 Experimental scenario

Host to VM communication

VM to VM communication

Congestion control (I)

• In RINA CC is a generalization of how it is done in the Internet

• Benefits:

– “Naturally” gaining from properties of various previous improvements in

the Internet, without inheriting their problems (PEPs), flow aggregation

– Customization of CC policies to each layer needs (not one size fits all)

– With explicit detection, congestion effects can be confined to a single layer

(faster and more local response to congestion)

23

… 2-DIF

1-DIF

…

Some
DIFs

RM
T

RA

EFC
P

Some
DIFs

N-DIF

Sender Receiver

RM
T

RA

RM
T

RA

EFC
P

RM
T

RA

EFC
P

RM
T

RA

RM
T

RA

EFC
P

RM
T

RA

EFC
P

R
M
T

RA

EFC
P … …

 #ict-pristine

Congestion control (II): simulations

• Horizontal: consecutive DIFs

• Vertical: stacked DIFs

24

S
1

R
1

Router
1

TCP
Contro

l
Loop

Split-
TCP

Control
Loops

S1

Sn

R1

Rn

Router1 Router2

…

…

n = 5, 10, 15 n = 1

File transmission start/finish times for File 1: 20MB, File 2: 500KB

 #ict-pristine

• TCP (iperf) vs. RINA with two different cc policy sets deployed in the red

DIF. 4 flows, Throughput vs. Experiment time

Congestion control (III): prototype

File transmission start/finish times for File 1: 20MB, File 2: 500KB

 #ict-pristine

TCP

RINA with RED PS

RINA with Jain PS

Experiment setup

Security overview: placement of security

functions in RINA

26

Allocating a flow to
destination application

Access control

Sending/receiving SDUs
through N-1 DIF

Confidentiality, integrity

 N DIF

 N-1 DIF

IPC

Process

IPC

Process

IPC

Process

IPC

Process Joining a DIF
authentication, access

control

Sending/receiving SDUs
through N-1 DIF

Confidentiality, integrity

Allocating a flow to
destination application

Access control

IPC

Process

Appl.

Process

DIF Operation
Logging/Auditing

DIF Operation
Logging/Auditing

• IPC Process components involved in security

• CACEP: Authentication policies

• Security Coordination: Credential Management, Access Control
Decisions (allow new IPC Processes in the DIF, accept flows to
applications), Intrusion Detection/Prevention?, other?

• SDU Protection: Confidentiality mechanisms (encryption)

• RIB Daemon: Logging of operations in the DIF

 #ict-pristine

Security: DIFs are securable containers

• Different security policies depending on who can join the DIF and trust on
N-1 DIFs

• Recursion provides isolation: internal provider layers are not visible to other
customer or provider networks (unless the provider’s systems are physically
compromised)

IRATI objectives, outcomes and lessons learned 27

Interior
Router

Customer
Border
Router

Interior
Router Border

Router

P2P DIF

Interior
Router

P2P DIF

Border
Router

P2P DIF P2P DIF

Interior
Router

Border
Router

Provider 1 Backbone DIF

P2P DIF

Border
Router

Provider 1 Regional DIF

Multi-provider DIF

P2P DIF

Access DIF

P2P DIF P2P DIF

Customer network Provider 1 network Provider 2 network

IPCP
A

IPCP
B

IPCP
C

P2P DIF P2P DIF

IPCP
D

Example: AuthPassword policy
(implemented in prototype)

28

IPCP
A

IPCP
B

Target of application
connection

Initiator of application
connection

1

M_CONNECT
AuthPolicy.name = PSOC_authentication-

password
AuthPolicy.version = 1

AuthPolicy.options = cipher

2

Generate random
challenge string

CHALLENGE REQUEST
random challenge string

3

XOR challenge string
with password, hash
result and return reply

CHALLENGE REPLY
XORed result

4

XOR random
challenge with

password, hash and
compare with

response

M_CONNECT_R

@ictpristine

IPCP
A

IPCP
B

Target of application
connection

Initiator of application
connection

1

M_CONNECT
AuthPolicy.name = PSOC_authentication-ssh2

AuthPolicy.version = 1
AuthPolicy.options = <proposed algorithms, DH

pubKey>

2

Select algorithms. Generate key
pair for DH. Combine with peer’s

pubKey to generate shared
secret. Hash to generate

encryption keys.
Enable decryption. Send

message. Enable encryption
DH Exchange

DH pubKey, selected algorithms

3

Select algorithms.
Combine peer’s

pubKey with DH key
pair to generate

shared secret. Hash
to generate

encryption key,
enable encryption
and decryption.

Client Challenge
Client random challenge encrypted with RSA pub key

4

<Now communication is encrypted>

Client Challenge response and Server Challenge
Hashed, decrypted client random challenge

Server random challenge encrypted with RSA public key

Generate key pair
for DH. Load RSA

key pair for
authentication.

Generate random
challenge. Encrypt with

RSA public key

Generate random
challenge. Encrypt with

RSA public key

Decrypt challenge with RSA
private key. XOR with shared

secret and hash.

5

Server Challenge Response
Hashed, decrypted server random challenge

Decrypt server
challenge with RSA

private key. XOR with
shared secret and hash.

Combine client
challenge with shared

secrete and hash.
Compare with received

value

Combine server challenge with
shared secrete and hash.

Compare with received value

6

M_CONNECT_R

Example: AuthSSH2 policy (implemented in prototype)

FINAL REMARKS

30

5

Final remarks

• Progress on improvement of core protocols (EFCP, CDAP). Started

working on policy specifications for authentication, access
control, SDU Protection, routing, congestion control and resource

allocation.

• Prototype (programmable via SDK) and Simulator maturing as

they are used in experiments. Getting ready to become usable to
newcomers (experiment tutorials under development).

• Started quantifying RINA benefits on particular areas and specific

scenarios/use cases (more to come during the following year).
Current focus is congestion control, resource allocation, routing,

security and network management.

• Started working with SDOs to educate them on RINA and consider

possible standardisation activities (ISO, ETSI). 5G and IoT are areas
of potential interest.

31

1

2

3

4

 #ict-pristine

Further information can be found here.

Twitter @ictpristine
www www.ict-pristine.eu

<Thank you!>

