15th Annual Global LambdaGrid Workshop
Plenary Sessions

Sep 30th

AMLIGHT

Running production and experimentation
at AmLight SDN

Jeronimo Bezerra
Florida International University
<jab@amlight.net>

anspW Aura S) <

Context
Motivation
Architecture
Methodology
Results

Future

Outline

AN 1GH]

Context

Amlight is a Distributed Academic Exchange Point

Production SDN Infrastructure (since Aug 2014)
Connects AMPATH and SouthernLight GLIF GOLES

Carries Academic and Non-Academic traffic
— L2VPN, IPv4, IPv6, Multicast

Supports Network Virtualization/Slicing
— Openflow 1.0
— Flow Space Firewall for Network Virtualization/Slicing
— OESS for L2VPNs
— NSI(OpenNSA+OESS) and OSCARS enabled
* Including AMPATH and SouthernLight
— Currently 4 slices for experimentation (including ONOS SDN-IP)

LI

Northbound:
Users’ APIs

Southbound AP!:
OpenFlow 1.0

Physical Layer

Context (2) A

LU

OLLABORATION

AmLight’s
NRENSs

OpenNSA

OESS OESS

SDN-IP FIBRE Univ. ONOS Other
ONOS Twente ROX NOX Internet2 Testbeds

Virtualization/Slices (FlowSpace Firewall)

T 7
/ /
/ /
Andes1 Andes2 i Ampathl Ampath2 SouthernlLight
§ .

o

> 4

= Ny
3

OpenFIow .
| ¢ —
INTERNET. T
} {'ﬂ»
QDpe
("\ "
&

[N

...................

RESTARCH - IDUCATION

eBGP session
to Intemet2 Florida International University (FIU)

Miami, Florida, US
lcr{- - Ro:ﬁlar; o S
[:t) , ams, Flonda,

REUNA | 0 e AN

: SP
Santiago, Chnlo *@sqo Paulo, Brazil

RedClara Chile
Santiago, Chile

Examples (3) — And more... .

AN 1GH]

In partnership with RNP:

— FIBRE (Future Internet testbeds / experimentation between BRazil and
Europe): how to use an OpenFlow native backbone to interconnect FIBRE
islands (or racks)?

— FIBRE island installed at AMPATH/Miami and using AmLight

In partnership with Internet2:

— Internet2 Technology Exchange 2014 — Multi Domain controller managing
slices from different SDN domains (Internet2, AmLight, Univ. of Utah and
MAX)

— Internet2 Global Summit — ONOS SDN-IP demonstration

In partnership with University of Twente:

— “Assessing the Quality of Flow Measurements from OpenFlow Devices”
— Authors: Luuk Hendriks, Ricardo de O. Schmidt, Ramin Sadre, Jeronimo A.
Bezerra, and Aiko Pras

All of them running on the same production infrastructure
7

Motivation -.

RESTARCH - TDUCATION
COLLABORATION

How to guarantee experimental applications won’t affect my
“production” slice?

FlowSpace Firewall slices based on <switch,port,vlan>:
— No extra filters are possible at this moment

Multiple OF controllers could manage the same OpenFlow device:
— Complicated to isolate who is sending specific OF messages

Ill

OpenFlow deployed by some vendors is still “experimental”:
— Unsupported messages could lead to a device crash

Troubleshooting is still complicated:
— Logs provided by the SDN stack is still poor

Architecture

e Single FSFW interfacing all apps

* Troubleshooting done through
logs and tcpdump captures

* A testing methodology in place
before adding new testbeds:

— Understanding of the researcher’s
applications

— Tests in lab prior adding to the
production environment

— AmlLight and Researcher manage the
SDN app together

* Risky
— Very time-consuming
— A few reloads happened, hard to
understand “why”

- Before

RESTARCH - TDUCATION
COLLABORATION

Production

Testbed 1 Testbed N+1 OESS

|
|
|
|
|
|
| L

Production FlowSpaceFirewall

7 N
7/ / ' \ N\
\

\ \
7 / \ N
/ / | . N\
7 \ \
7/ / | \ \
7 N
; 7 § / E \,E \ E

OpenFlow Communication

New Architecture — Proof of Concept __

Two Layers of Virtualization
— Main/Production Layer
— Experimentation Layer

Experimentation Layer had a “Sanitizer” module
added:

— Controls what OpenFlow messages can be sent to the
“Physical Layer”

— Allows filters per OpenFlow Type, per-match and per-
action

— Off-loads switches from unsupported OpenFlow
messages

Sanitizer logs transactions and filters based on
dictionaries:

— XML files created as result of OF Tests

— Detailed logs per slice or per type of message

OpenFlow Sniffer keeps monitoring all
communication
— To help vendors in their troubleshooting activities

Testbed 1 Testbed N+1

N\

A /

“ Sanitizer”
FlowSpaceFirewall

N\
N\
N\
N

AN 1GH]

Production
OESS

Production FlowSpaceFirewall

/
/ / |
/

N N

N
N
\ N

sy \\

7 ‘ N
/ / NN
/ / | \ N\

— — = -=0penFlow Communication- = — -

10

Methodology A,

AN 1GH]

* OF Tests:
— Each device, software version and line card type is stressed in lab
— Unsuccessful tests are collected and processed

— When a specific match or action is not supported, it is added to the
dictionary

e XML filters

— Defines the Dictionary to be used by Sanitizer
— They can be created through field experience

* Filters are stateless:

— Less powerful but easier to deploy and faster

— Some issues require stateful filters (future work?)
11

Examples A

AN 1GH]

* ONOS vs Brocade CES
— ONOS sends all flows in a single batch command
— Brocade CES doesn’t support MAC rewrite
— ONGOS logs only have “batch failed”
— Tcpdump had to be used
— Satinizer’s dictionary has a “CES and Mac-rewrite don’t mix” entry and log it

 Brocade CES NI 5.7 vs OpenFlow Vendor type

— Some OpenFlow messages type Vendor were forcing Brocade CES to restart the
OpenFlow connection

— Satinizer’s Dictionary has a “CES 5.7 doesn’t take unknown Vendor ID” filter and
log it

* OESS Forwarding Verification vs Brocade MLX-4 4x10G line card
— Ethertype 0x88bc not support, internal trace logs rotating too fast
— Satinizer’s Dictionary has a “LP 4x10G and Etype “A” don’t mix” filter and log it

12

Findings P

AN 1GH]

Off-loading some filters help switches to focus on “supported”
features

— Also preserves switches internal trace logs queue

New per-slice logging helps to identify which application sent a
specific OpenFlow message

— Helps researcher to improve his/her SDN application

Troubleshooting logs helps vendors to reproduce the issue

A testing methodology before adding anything to production is
still required, once some issues require stateful/complex filters

13

Future __

AN 1GH]

Testbed Sanitizer was a proof-of-concept to understand how
complex and deep the problem is

Future is unclear: should we develop a production sanitizer?
Or should we “force” vendors to create a better code?

Stateful filters are very important, but they are very complex
to deploy

OF 1.3 will be even more complicated: meters, multi-tables,
etc.

14

