Software-Defined Network Exchanges (SDXs): Architecture, Services, Capabilities, and Foundation Technologies

Joe Mambretti, Director, (j-mambretti@northwestern.edu) International Center for Advanced Internet Research (www.icair.org) Northwestern University Director, Metropolitan Research and Education Network (www.mren.org) Co-Director, StarLight, PI-iGENI, PI-OMNINet (www.startap.net/starlight) Co-PI Chameleon (www.chameleoncloud.org)

> Global LambdaGrid Workshop Queenstown, New Zealand September 30 - October 1, 2014

iCAIR

The Global Lambda Integrated Facility (GLIF) Is Based On GOLEs (GLIF Optical Lambda Exchanges)

Many Years Ago, the GLIF Community Began Developing The Network Service Interface (NSI) Architecture With the Open Grid Forum (OGF) To Enable Path Resource Sharing Among GOLEs Which Have Multiple Control Frameworks

Automated GOLE Fabric

Source: GLIF Auto GOLE Group

GLIF AutoGOLE Initiative Oct 2013

Building an AutomatedGOLE backbone

Tasks/Goals For 2014

Work items 2014

Item	Description	Due	Leading organization	
Authentication /	Creating a AAI framework that allows	TNC2014	SURFnet	
Authorization	secure setup of services		(Hans Trompert)	
Topology	Creating a mechanism that exchanges	SC'14	ESnet, UvA	
Exchange	topology descriptions of GOLEs		(Chin Guok, Miroslav	
	automatically		Zivkovic)	
Retagging	Describing what's necessary to implement retagging canabilities incide the AutoCOLE	SC'14	Group effort	
capabilities	febric also creating a plan for			
	fabric – also creating a plan for			
	Information and a second public second	0.4	10410	
CDN /O	It's foreseen that AutoGOLE NRMs could be	Q4	ICAIR	
SDN/OpenFlow	talking OpenFlow to actual hardware. This		(Jim Chen, Joe Mambretti)	
inside the	item results in deployment of an			
AutoGOLE	OpenFLow controller speaking NSIV2			
	inside the AutoGOLE			
Operational items	creating concepts on strengthening	Q4	rangui coulouarri to look	
	operations, implementing these		for someone to lead	
			(uniform) perational	
			issues	

The iGENI SDN/OpenFlow Consortium Uses The Global Lambda Integrated Facility

Ó

GENI Mesoscale Network: InstaGENI

Software Defined Networking Exchanges (SDXs)

- With the Increasing Deployment of SDN In Production Networks, the Need for an SDN Exchange (SDX) Has Been Recognized.
- Current SDN Architecture Is Single Domain Centralized
 Controller Oriented
- Required Capabilities for Multi-Domain Distributed SDN Resource Discovery, Signaling Provisioning, Operations, and Fault Detection and Recovery Are Fairly Challenging.
- Nonetheless Many Motivations Exist for SDXs

Motivations for SDXs

- WH Office of Science and Technology Policy Large Scale Science Instrumentation
- Large Scale Ultra High Resolution Digital Media Services
- Multi-Domain Networks Interconnecting Data Centers (SDN Is Already in Production Within Large Scale Data Centers)
- Multi-Domain SDN Services
- Providing Capabilities for Edge Control
- Democratization Of Exchange Facilities
- Network Function Virtualization (NFV)
- And Much, Much More!

NB: In the Future ALL Exchanges Will Be SQXs R LIGHT[™]

Compilation By Maxine Brown

Google's Software Defined WANGoogle

Examples from NZ #2: SDX

12 November 2013

CityLink and NoviFlow sign agreement to create the first SDN Based Internet Exchange in the World

CityLink and NoviFlow today announced their agreement for the supply of Software Defined Networking (SDN) equipment, which will be deployed in New Zealand's Internet Exchange Points (IXPs) around the country.

Group Chief Technology Officer Jamie Baddeley said that "...the agreement is the conclusion of an exhaustive set of tests of key SDN switching vendors that has taken place at CityLink over the last 12 months. We have very exacting requirements when it comes to SDN and the IXPs. NoviFlow clearly demonstrated their capability and commitment to very high performance Software Defined Networking and because of that we're innovating the future architecture of Internet Exchange Points with them."

Software Defined Networking Exchanges (SDXs)

- Today, No Production SDX Exists
- However, Currently the International Center for Advanced Internet Research (iCAIR) and Its Research Partners Are Designing and Implementing a Prototype SDX at the StarLight International/National Communications Exchange Facility
- Georgia Tech and SOX Are Prototyping a SDX In Atlanta
- With Support from the National Science Foundation's Global Environment for Network Innovations (GENI) Program
- Others are Being Developed in Many Places, Including the Netherlands, Japan, Canada, the Republic of Korea – and New Zealand
- Ref: GLIF Multi-Country SDX Demonstration
- The StarLight SDX Is a Multi-Domain Service Enabling Federated Controllers To Exchange Signaling and Provisioning Information

Selected SDX Architectural Attributes

- Control and Network Resource APIs
- Multi Domain Integrated Path Controller
- Controller Signaling, Including Edge Signaling
- SDN/OF Multi Layer Traffic Exchange
- Multi Domain Resource Advertisement/Discovery
- Topology Exchange
- Multiple Service Levels At All Layers
- Granulated Resource Access (Policy Based), Including Through Edge Processes
- Foundation Resource Programmability
- Various Types of Gateways To Other Network Environments
- Integration of OF and Non-OF Paths, Including 3rd Party Integration
- Programmability for Large Scale Large Capacity Streams

StarLight – "By Researchers For Researchers"

StarLight is an experimental optical infrastructure and proving ground for network services optimized for high-performance applications **Multiple** 10GE+100 Gbps **StarWave Multiple 10GEs Over Optics –** World's "Largest" 10G/100G Exchange **First of a Kind** Enabling Interoperability At L1, L2, L3 View from StarLight

iCAIR

Abbott Hall, Northwestern University's Chicago Campus

StarLight SDX (iSDX)

- At Highest Level, Appears As a Very Large Scale Virtual Switch
- Resources Can Be Segmented/Partitioned
- Architecture Is Informed By NSI, GENI, Related International Network Testbeds, Emerging Concepts
- Based On An Underlying Foundation of Programmable Resources
- Includes Specialized APIs for Provisioning
- This SDX is Being Showcased Through GLIF
 Demonstrations

🚽 🥙 http://165.124 🔎 👻 🗟	🖒 🗙 🔟 Fei I Yeh - Outlook Web App 🧔 Swi	tch Manager 🛛 🗙	0 17 18	
igeni	ST * RLIGHT	iCAL	R	
URL:				
port:				
submit				
server: 165.124.3.79: client:Not known	8080			
Create VLAN	1			
Add/delete	port from VLAN			
Show port				
Show VLAN				
Show/Add/D	elete Flow			
 Connectivity 	/ Functions			
○ Ping ○ Ti	ace			
Interface:				
MAC address	:			
submit				

- Initial SDX Capability Between GENI Sites (StarLight and SOX) Was Demonstrated
- Motivation: To Share a Vision of Interconnected US Nationwide SDN Infrastructure, With Multiple SDN Capable Networks and Domains
- SDX Benefits Was Showcased Through a Compelling Application – Nowcast – Developed By Mike Zink et al at University of Massachusetts, Amherst
- (GEC 19 Is Co-Located With the GLIF Tech Workshop, March 19-20)

SDX Demonstration Application: Nowcast

- Radar Data Based Approach For Short-term
 Weather Prediction
- Short-term: 1-15 Minutes In The Future
- Current Forecasts:
 - Assimilate Data From Many Sensors: Radar, Satellite, Balloons, etc.
 - Usually For Large Regions
 - Takes Super Computers to Calculate

Nowcast – Processing

Source: Mike Zink

Nowcast Example

Source: Mike Zink, UMass Amherst

Comparison With Existing System

Potential

Source: Mike Zink, UMass Amherst

GENI SDX Demo Scenario 1

of the Future

Slide by Mike Zink, UMass Amherst

GENI SDX Demo Scenario 2

SDX StarLight⇔NetherLight

Ronald van der Pol, Joe Mambretti, Jim Chen, John Shillington

iSDXs @ Global LambdaGrid Workshop

- International SDX (iSDX) Demonstrations Showcase a World-wide Prototype Environment That Could Be Used for Modeling Major Weather Systems, Including The Depiction/Prediction of Severe Weather Patterns.
- Application Based on Nowcast System Being Developed by the NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (Led By University of Massachusetts at Amherst), Which Is Being Designed for Next Generation Weather Depiction/Prediction and Visualization Systems.

International Software-Defined Network Exchanges (iSDXs): A Demonstration of Global Capabilities

Joe Mambretti, Jim Chen, Fei Yeh International Center for Advanced Internet Research Northwestern University, USA Mike Zink, Divyashri Bhat University of Massachusetts, Amherst, USA **Ronald Van der Pol** Surfnet, Netherlands Grace Lee, WunYuan Huang, Te-Lung Liu NARLabs, National Center for High Performance Computing, Taiwan Thomas Tam, Herve Guy, **CANARIE**, Canada Alex Valiushko, John Shillington, Cybera, Canada **Buseung Cho, KISTI Republic of Korea** Michiaki Hayashi, KDDI Labs, Japan Toshiaki Tarui, Hitachi, Japan Aki Nakao, University of Tokyo, Japan Steve Cotter, T. Charles Yun, Jamie Curtis, Andrej Ricnik **REANNZ, New Zealand** Josh Bailey, Google, New Zealand Artur Binczewski Belter Bartosz Miłosz Przywecki Piotr Rydlichowski Poznan Supercomputing and Networking Center, Poland Russ Clark, Georgia Tech, USA

> Global LambdaGrid Workshop Queenstown, New Zealand September 30-October 1, 2014

International SDX Demonstrations

- Demonstrations of A Prototype Implemented Across the Globe Using the GLIF To Interconnect Sites World-Wide, Supported by Interoperable International SDXs, Including Sites at
 - a) the StarLight International/National Communications Exchange Facility, Designed by iCAIR
 - b) New Zealand, Designed by REANNZ and Google
 - c) Republic of Korea, KISTI/KREONET
 - d) Taiwan, Designed by High Performance Computing Center/TWAREN
 - e) Amsterdam, SDX prototype at NetherLight Designed by SURFnet,
 - f) Ottawa, Designed by CANARIE and Cybera,
 - g) Tokyo, Designed by the University of Tokyo
 - h) Poznan, Designed By the Poznan Supercomputing and Networking Center
 - i) Atlanta, SDX Prototype at SOX, Designed by Georgia Tech
- SDN/OpenFlow Controllers, Federated To Enable Cross-Domain Interoperability.
- Controllers Use Distributed Control Plane To Directly Address and Dynamically Manage Multiple Paths Among Sites Via Distributed
 Data Plane - Transporting Nowcast Instrumentation Traffic Among ST R LIGHT^{**}

Sites.

Inter-SDX federation for GEC21

Multi-architecture Federation

OF@KRLight+KREONET

CANARIE/Cybera Openflow testbed

TWAREN OpenFlow Testbed now

•For TWAREN connectors (NCTO, NCRO, ROAS and NCO), a dedica

VLAN is allocated for better transmission performance.

Extended International connections with JGN-X and SURFnet

OFNSI in NCHC

Emerging SDX Initiatives

- Integration of SDXs and Large Scale Data Intensive Science Stream Services
- Specialized SDXs For Specific Applications
- Integration With Testbeds (e.g., GENI, Chameleon, HPDMnet, iGENI, Other International Network and Cloud Testbeds, etc)
- Ref: Future Demonstrations at SC14
 Supercomputing Conference in Novemeber in New Orleans

OpenFlow/SDN demo - ANA path (100G) VLANs 1921-1929 VLANs 2602, 2603, 2606, 2607 Caltech demo - ANA path (100G) Caltech demo - FNAL path (60G) VLANs 2600, 2601 VLANs 2604, 2605 Caltech demo – NERSC TB path (100G)

ESnet

NASA/GSFC High End Computer Networking (HECN) Team Diagram by Bill Fink / Paul Lang

Computational Genomics @ 100 Gbps at SC13 in Denver Colorado

Computational Genomics at 100gb Speeds

Bob Grossman – University of Chicago Joe Mambretti – Northwestern University & Starlight Don Preuss, Chris Cope – NCBI @ National Institutes of Health

NIH-OCC Computational Genomics and Analytics 100 Gbps Testbed

Prototype SDX BioInformatics Exchange

- Demonstration Showcase Designed for SC14 in New Orleans, Louisiana
- Builds On Previous Initiatives Developing Services for Computational BioInformatics and Computational Genomics at 100 Gbps
- Previous Demonstrations At several Conferences, Including SC13
- The SDX BX Is Veing Designed Specifically for BioInformatics/Computational Genomic Worksflows
- Appears As a Private Exchange for BioInformatics Research Communities

GTS connectivity to GENI Facilities (step 1: Static transit connection)

Connect | Communicate | Collaborate

GTS connectivity to GENI Facilities (step 2: Dynamic transit provisioning)

www.chameleoncloud.org

Another SDX Opportunity!

CHAMELEON: A LARGE-SCALE, RECONFIGURABLE EXPERIMENTAL ENVIRONMENT FOR CLOUD RESEARCH

Principal Investigator: Kate Keahey

Co-Pls: J. Mambretti, D.K. Panda, P. Rad, W. Smith, D. Stanzione

AUGUST 29, 2014

SOLVING TODAY'S RESEARCH CHALLENGES

Big Data Data volume, velocity, and variety

Large Scale

Programmable networks cheap, ubiquitous sensors and other emergent trends

> **Big** Instruments Cyber-Physical Systems, Observatories

Big Compute

A wide range of data analytics

Engagement

Reconfigurability

Connectedness

www.chameleoncloud.org

www.startap.net/starlight

Thanks to the NSF, GPO, DOE, DARPA Universities, National Labs, International Partners, and Other Supporters

ALL IN COTTAGE MADE

