SDN Multi-Domain
Architecture Thoughts

Global Lambda Integrated Facility (GLIF)
Technical Working Group Meeting #19
Honolulu, Hawaii
January 16, 2013

Tom Lehman
Mid-Atlantic Crossroads
University of Maryland

Mid-Atlantic Crossroads

Perspective/Reference Points/Assumptions

SDN is an abstract, undefined term which basically just
means that we can do things dynamically in the network
via an API

OpenFlow is one type of APl and/or control mechanism
which can be part of an SDN domain

There will be other APIs and control mechanisms which
will be part of SDN

We can design a Multi-Domain SDN solution by
considering similar things to what we need to consider for
any Multi-Domain Service systems

Administrative domain demarcations will remain at base
level - recursion and slicing will be used to present users
with something different

Perspective/Reference Points/Assumptions

* From a user perspective we will be provisioning
"services", which need to be defined.

* OpenFlow Service Example: user uses and API to
get a FlowTable rule inserted in their favorite
OpenFlow Network which gives them some vlan
and mac space, and then they fire up their own

OpenFlow Controller to create slices

* MultiPoint Topololgy Service Example: user gets
a multi-point topology over which they run their
own applications.

" internal mechanism may be via OpenFlow, or may be
via other mechanisms

Key Architectural Considerations

SDN Multi-Domain Service may be more accurate term
then SDN Inter-Domain

OpenFlow is both a control plane and a data plane
The data plane is unique as compared to other data
planes we have dealt with:

* flowspaces can cover alot of areas and unique combinations
At the OpenFlow control plane level, we also have
options:

* |et users run their own openflow controller and talk to network
flowvisor

* just provide user services thru an API, with OpenFlow being the
internal mechanism to get things done

Key Architectural Items

User Services Definition

Controller Service API
* Tree vs Chain messaging
e Real-Time resource identification (multi-round negotiation protocols)
e schemas (syntax, semantics, use cases) for service and resource descriptions

TOPOIOgy Service \ *These are the most
* Export/Distribution (realtime vs static) important things that need
» schemas (syntax, semantics, use cases) for to be done first

*This is the language for
describing services and

Computation Service resources

* Resource/Path Computation

resource descriptions

Common set of schemas for topology descriptions and service
request/responses

Authentication/Authorization Features

* needed for Service Requests and Topology Viewing

Key Architectural Iltems

There are multiple architectures and many protocols
which can make this work

All of the protocols and schemas in discussion today could
be used as part of this Architecture
solution/implementation

But the architecture/system is more then just a protocol

* many details must be specified and implemented
associated with all the architecture components

not sure who will design/implement/test/support the full
system?
* it would be helpful if there was more

coordination/development synergy across the various
projects working on these issues

One Architectural Approach
(based on experience with OSCARS, DRAGON, GENI)

Centralized at the Intra-Domain level for resource
management and service provisioning

Distributed at the Multi-Domain level for resource
management and service provisioning

External topology distribution systems must not require
large/frequent dynamic data export (scalability and
stability issues)

Resource identification for real-time service provision can
only be done by local domain systems

Multi-domain service provision based on tree mode
protocols which include real-time negotiation/multi-
phase commit features

Multi-Domain SDN Architecture

topology advertisement

e does not need realtime ~a ‘ ;3
dynamic information : o) *‘

Topology ¢ allows for scaling

Export (push

?‘.{f Resource

Computation

Topology
Service

or pull) From
Domains

Scheduling/

Reservation/

Provisioning
Tool

y .
.~ Controller". L Contrnller -
A - L Controller ~ N
Controller

Service
Instantiated

Multi-Domain Service Provision Phases
A. Topology Advertisement

1. Client Request

2. Resource Scheduling (Multi-Phase)
3. Service Instantiation

GENI Network Stitching Architecture

Stitching Path

Advertisement _ Computation

RSpec w/stitching Topology
pulled via GENI AM ListResources Service Srlueniisliia
-preloaded for all DCN w/o GENIAM 3 {R.qu.+5p.: Expandad)

-indicates DCN true or false

T) CreateSliver/Allocate/Provision
— T 2 [Hecaxt #5pac Forwmrd) WorkFlow Rules

e Client Slice Request *
/Host Any 1Ghs, VLAN Any Host A - __

=

1 Reguast RSpac

E J / _'_'_'_,___o—'—' - T
L - Client Slice Request
- Host A

3 OMNI / R4 After Computation Hu A :
simple workflow logic (client tool) \ i CRON } pid

-CreateSliver (v2 API) i TT— -

-Allo cate/Provision (v3 API) el or
‘KM
Host B .:".I h! J "\u‘
) \

—dnternet2 AL2
- _ =

Architecture
Components
N
M,

b ProtoGENI
~—————

Stitching

——> (CreateSliver/Allocate/Provision

OSCARS/IDCP

The "service" is Ethernet Virtual Private Line (EVPL) with dedicated bandwidth
Different networks use different technologies to instantiate (MPLS, SONET, Native Ethernet, WDM)

Resource Scheduling Phase Features:
e Initial Multi-Domain Path Computation based on Topology
Topology Service information Service
¢ Realtime MultiDomain Resource identification and (PerfSonar)
Reservation via the IDCP messaging
-modeled after PCEP with Time Domain added
-handles all the complexities of label (vlan) manage
¢ Deterministic multi-domain scheduling resolution
prior to client notification of reserved status A

A
Request: 5 Gbps Circuit between
A and B at 15:00 on August 20,
2012 for a 3 hour duration

topology advertisement
e "non-dynamic” link state
o allows for scaling

[Endsystem A gl

— 1 \,.4/ 2 /'I
1= | OSCARS

OSCARS

Instantiated
Service Provision Phases

A. Topology Advertisement
1. Client Request

2. Resource Scheduling IDCP
3. Service Instantiation Based

OSCARS acts as an "IDC"

¢ InterDomain Controller Protocol (IDCP)

e Protocol agreement between ESnet,
Internet2, Caltech, GEANT

e Enables the multi-domain service

	Slide Number 1
	Perspective/Reference Points/Assumptions
	Perspective/Reference Points/Assumptions
	Key Architectural Considerations
	Key Architectural Items
	Key Architectural Items
	One Architectural Approach�(based on experience with OSCARS, DRAGON, GENI)
	Multi-Domain SDN Architecture
	GENI Network Stitching Architecture
	OSCARS/IDCP

