

WAN Virtualization

Looking beyond Point to Point Circuits

Inder Monga

Chief Technologist & Area Lead Energy Sciences Network Lawrence Berkeley National Lab

Special Symposia on Cloud Computing II. Network Virtualization

March 17th, OFC/NFOEC 2013

Fundamental Network Abstraction: a end-to-end circuit

2

U.S. Department of Energy | Office of Science

New Network Abstraction: "WAN Virtual Switch"

Abstract Network Model

Network Virtualization

Simple, Multipoint, Programmable

Configuration abstraction:

- Expresses desired behavior
- Hides implementation on physical infrastructure

It is not only about the concept, but implementation is key

6/18/13

Thought experiment: Build an N-port virtual switch for a collaboration

$CERN \to \!\!T1$	mile s	kms	
France	350	565	
Italy	570	920	
UK	625	1000	
Netherlands	625	1000	
Germany	700	1185	
Spain	850	1400	
Nordic	1300	2100	
USA – New York	3900	6300	
USA - Chicago	4400	7100	
Canada – BC	5200	8400	
Taiwan	6100	9850	

Johnston

6/18/13

Recursive Nature: Horizontally and Vertically

Layer-based representation

SC12 Demonstration Physical Topology

- ★ Office of Science National Labs
- Ames Ames Laboratory (Ames, IA)
- ANL Argonne National Laboratory (Argonne, IL)
- BNL Brookhaven National Laboratory (Upton, NY)
- FNAL Fermi National Accelerator Laboratory (Batavia, IL)
- JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA)
- LBNL Lawrence Berkeley National Laboratory (Berkeley, CA)
- ORNL Oak Ridge National Laboratory (Oak Ridge, TN)
- PNNL Pacific Northwest National Laboratory (Richland, WA)
- PPPL Princeton Plasma Physics Laboratory (Princeton, NJ)
- SLAC Stanford Linear Accelerator Center (Menlo Park, CA)

Summary

Motivation

- Powerful network abstraction makes it easier for complex application and collaboration interactions
 - Files/Storage

Simplicity

- Simplicity for the end-site
 - Works with off-the-shelf, open-source controller
 - Topology simplification
- Generic code for the network provider
 - Virtual switch can be layered over optical, routed or switched network elements
 - OpenFlow support needed on edge devices only, core stays same
- Programmability for applications
 - Allows end-sites to innovate and use the WAN effectively

Architecture

6/18/13

• OpenFlow at the edge to start with, can upgrade the core opportunistically

© Inder Monga OFC/NFEC, 2013

U.S. Department of Energy | Office of Science