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Key issues for distributed 

renewable-powered datacenters 

 Green energy availability varies dramatically 

 Instantaneous use leads to significant energy efficiency losses 

 Prediction is needed 

 Datacenter computing requires consistent performance 

 Infrastructure that monitors and manages computation in datacenters 

has to be aware of performance costs 

 Service response times are around 100ms, Max 10% batch job throughput hit 

 Energy costs of datacenters are typically higher than green 

energy availability 

 Brown energy needs to be present to both supplement green and as 

“insurance” to meet performance constraints 

 Improvements in computation & networking infrastructure energy 

efficiency are necessary (power, thermal and cooling management) 
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Datacenter energy efficiency  

Barroso & Hölzle, 2009 
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Energy efficiency of the infrastructure 

Dynamic thermal management (DTM) 
• Workload scheduling: 

• Machine learning for dynamic 

adaptation 

• Proactive thermal management 

• Reduces thermal hot spots by average 

80% with no performance overhead 

• Cooling aware management  

• Savings of 70% in cooling subsystem 
 

 Dynamic power management (DPM) 
• HW level: adaptive power gating gives 

40% energy savings with no perf. impact 

• SW level: 92% reduction in performance 

variability with DVFS 

• Optimal DPM for a class of workloads 

• Machine learning to adapt 

• Select among specialized policies 

• Measured energy savings of  70% 

NSF Project GreenLight 
• Green cyber-infrastructure in 

energy-efficient mobile facilities  

• Closed-loop power and thermal 

management  
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NSF GreenLight: 

Dashboard & History plots 

 Multiple sensor data: temperature, fan 
speed, liquid flow rate & temp, power 

 Use measurements to develop models 
needed for energy management 6 



GMVQ VM Power Cost Prediction 

• Goal: Estimate how much a VM consumes and predict what the cost would 

be if it migrates to another machine 

70

W 

Power clusters 

CPU utilization is not enough! 

 

Tajana Simunic Rosing, UCSD 

• Approach: Gaussian Mixture Vector Quantization (GMVQ) to fit a GMM to the 

training data 

 GMVQ is 3x better than regression 

 

3x 
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Energy management with virtualization 
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• Scheduling 
• Co-locate guests with orthogonal characteristics 

• Management policies 
• Based on the metrics maintained per guest 

  Avg 35% Energy Savings 

 

  Avg 40% speedup 

vGreen 
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vGreen+ 
Batch Jobs: 

•MIPS driven 

Services: 

•Latency sensitive 

 Maximize qMIPS/Watt 

 q  QoS ratio < 1 

 MIPS  Batch job throughput 

 Watt  Power consumption 

 

 

vgnodes 

vgserv 

Tajana Simunic Rosing 

VMs: Energy and QoS 



Unmodified Xen: RUBIS w batch job 

Poor 

SLA! 

vGreen: Rubis & batch job 

Great

SLA! 

Managing multi-tier applications 

RUBiS: auction website 
 

Clients 

Webserver (PHP) 

Database (mysql) 

Tajana Simunic Rosing, UCSD 

 What happens when we combine: 

 Latency sensitive jobs (e.g. RUBIS) 

 Throughput sensitive (e.g. batch jobs) 

 Preliminary results:   

 More than 10x improvement in SLA with 
background jobs relative to the default scheduler 



 State of the art: 
 Baseline: running services and batch jobs on separate servers 

 Selective Consolidation (tChar): vGreen 

 Capping (tCap): Cap the CPU allotment to bVM to mitigate 
interference effects (Padala@EuroSys’09, Nathuji@EuroSys’10) 

 Controller: 
 Dynamically control the vCPU allocation of the service VM to maximize 

the batch job throughput while meeting service response times 

 

 

VM Scheduling Policies Throughput 

Our controller is within 

7% of baseline; CPU 

capping has 25% lower 

average throughput 

Batch job 

throughput 



 Use a controller to manage virtual CPUs dynamically 
 Maximize CPUs of various batch jobs while meeting Rubis SLAs 

 

 

Energy Efficiency Improvements 

• 70% more efficient than running service & batch VMs separately 

while within 7% of maximum batch job throughput 

• 35% more efficient than the ideal version of state of the art 



Green Energy Prediction 

• Data from solar panels at UCSD 

• State of the art: exponential weighted 

average 

• EWMA: 32.6 % error 

• Extended eEWMA: 23.4% error 

• Our algorithm: 

• WCMA: less than 9.6% error 

• Data gathered from a wind farm in 

Lake Benton, available by NREL 

• State-of-the-art: 
• Integrated predictor: 48.2% error 

• Our algorithm: 21.2% error 
• Combination of a weighted nearest-

neighbor (NN) tables and wind power 

curve models 

 

 Predict green energy availability for the next 30min window 

 Schedule additional MapReduce jobs accordingly; they take max 30mins 

 



Methodology 
 Use green energy to schedule “extra” batch jobs.  

 MapReduce (MR) type jobs for this purpose.  

 Initiate more subtasks with the available green energy. 

 Increased throughput 

 Reduced completion time  - limit reduction to 10% 

 Kill a subtask if the green energy supply level drops 

 

MR arrival 

Active MR jobs  Servers 

Web Request arrival 

Green Energy Supply 

Server Web Request Queues 

Brown Energy Supply 



Experimental setup & validation 

 Globally distributed 

datacenters connected  

 5 datacenters, 12 routers, 

modeled after ESnet 

 Solar traces from UCSD  

 Wind traces from NREL 

Tajana Simunic Rosing 

Simulator validation  
Measured 

Value 

Simulated 

Value 

Ave. 

Error  

Avg. Power Consumption  246 W 251 W 3% 

Rubis QoS ratio 0.08 0.085 6% 

Avg. MapReduce Completion Time 112 min 121 min 8% 

 Jobs run within vGreen VMs on Nehalem server 

 Rubis used for services with 100ms 90th%ile response time constraint 

 MapReduce used for batch jobs with 10% max job completion time 

reduction (max 5 cores on Nehalem server) 

 Use VM migration (with quantified performance impact) 



Benefits of Green Energy Prediction 
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instantaneous prediction

Prediction has 93% GE Efficiency 
 

GE Efficiency:  ratio of green energy consumed for useful work vs.  

 the total green energy available 

 

 Compare our green energy predictive jobs scheduler 

with instantaneous usage of green energy 



Benefits of Green Energy Prediction 
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w/o GE instantaneou prediction

Prediction has 22% faster batch job 

completion time vs. instantaneous 

 

On average, 5x fewer batch tasks 

need to be terminated when using 

GE prediction vs. instantaneous usage 
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instantaneous prediction

38% more jobs complete with 

prediction vs. instantaneous 

 

GE Job %: ratio of batch jobs 

completed with GE over all jobs.  

 



Next steps: Green energy 

powered global routing 
(jointly with Inder Monga, Esnet) 

2.8MW Fuel Cell 
Power Plant , UCSD 

Wind from NREL, 2MW Solar @UCSD 



Focus Center Research Program 

Sponsors 

DOD & DARPA 

  Applied Materials     
  Novellus       Cadence   

AMD MICRON 
Freescale Texas Instr. 
IBM Xilinx 
Intel GlobalFoundries 

Intel   MICRON 
Freescale   Texas Instruments 
IBM  Xilinx 
GLOBALFOUNDRIES  AMD 
  

Director: Prof. Paul Kohl (Georgia Tech).  Nanoscale electrical & 
optical interconnects; energy delivery and thermal management; 
wireless connectivity; modeling, analysis and assessment of new 
connectivity solutions. 

Interconnect  Focus Center [13 Universities]  

Director: Prof. Larry Pileggi (CMU).  Circuit/module infrastructure; 
enterprise systems; portable electronics; functional diversity and 
emerging circuits for post CMOS. 

Center for Circuit & Systems Solutions [13 Universities]  

Director: Prof. Jan Rabaey (UC-Berkeley).  High-level systems 
design addressing distributed sense and control systems, large-
scale and small-scale information technologies systems. 

Multi-Scale Systems Research Center  [10 Universities] 

Functional Engineered Nano-Architectonics [14 Univ.]  
Director: Prof. Kang Wang (UCLA).  Novel materials and 
processes which enable fabrication of nanoscale devices and 
interconnects.  

Materials, Structures and Devices [15 Universities]  
Director: Prof. Dimitri Antoniadis (MIT).  Integration of new 
materials enabling CMOS extension; carbon-based devices; novel 
embedded memory; functional diversification; theory, modeling and 
simulation of new devices.   

Director: Prof. Sharid Malik (Princeton).  Platform architectures; 
concurrent systems programming; platform viability; resilient 
systems and alternative computation models. 

Gigascale Systems Research Center  [15 Universities] 

Raytheon 
United Technologies 



DSCS Theme 

Distributed sense and control 

systems 

Target: Airborne Platforms (Avionics) 

5 faculty (reduced from 8), 3 locations 

LSS Theme 

Large-scale “energy-intensive” 

systems 

Target: Data centers 

9 faculty (stable), 5 locations 

SSS Theme 

Small-scale “energy-frugal” systems 

Target: Human enhancement 

5 faculty (reduced from 8), 4 locations 

MuSyC in a Nutshell 

GRAND CHALLENGE : “Energy-smart” distributed systems, that 

 Are deeply aware of balance between energy availability and demand 

 Adjust behavior through dynamic and adaptive optimization through all 

scales of design hierarchy.  

• 19 Faculty Distributed 

over 9 US Universities 

• 60 Students (many only 

partly funded) 

• 109 publications 

• Monthy e-seminars and 

bi-annual e-workshops 

29%	

32%	

26%	

13%	

2010-2011	

DSCS	

LSS	

SSS	

Center	



Multiscale Systems Center:  

Energy Balanced Datacenters 
Theme leader: Tajana Simunic Rosing 

Realize closed-loop energy management strategies that enable “energy-intensive” 
large-scale systems to be orders of magnitude more energy-efficient, while ensuring 
that mission-critical goals are met.  

“Doing nothing well” 



 Average cooling savings of 70% 
relative to state-of-the-art  

    

Combined Energy Thermal & Cooling, 

CETC Management Results 

Tajana Simunic Rosing, UCSD 

 CETC: Our policy 

 DLB: Dynamic load balancing  (baseline) 

 NFMO: Only page migrations allowed 

 NMM: No memory clustering  

 NCM: No CPU scheduling optimizations 

Intel Xeon Dual Socket 

Quad core Server; with 

state-of-the-art PI fan 

controller 

 CETC performance overhead < 0.2% 

 CETC page migration rate < 5 pages/sec  -> 

negligible overhead & high stability 

Local 

ambient 

Temp. 

# 

DIMM 

CETC 

% 

NFMO 

% 

NMM 

% 

NCM 

% 

DLB 

% 

45 oC  8 0.175 0.184 0.093 0.102 0 

35 OC 8 0.115 0.120 0.069 0.100 0 

45 oC 16 0.175 0.187 0.109 0.102 0 


