

High Performance Digital Media Network (HPDMnet): **Dynamically Provisioned** Inter-Domain International

Service for **High Performance Digital Media and Other Data Intensive Applications**

Joe Mambretti and the HPDMnet Consortium 10th Annual Lambda Grid Workshop CERN, Switzerland October 12-14, 2010

Overview

- Several Years Ago, An International Consortium of Research Centers Established a Cooperative Partnership To Address Key Challenges and Opportunities Related to Using Dynamically Provisioned Lightpaths for High Performance Digital Media (HPDM) and Other Data Intensive Applications
- Multiple Sites Require Controlled, Deterministic High Performance/High Volume/High Definition Digital Media Streaming Simultaneously Among All Locations (Point-To-Multipoint, Multipoint-To-Point, Multi-Point to Multi-Point)

– HPDMnet Is:

A Network Research Testbed

A Set of Prototype Services

A Capability for Digital Media Content

Overview

- Traditional L3 Techniques Cannot Be Used for Many Types of High Definition Media
- Traditional Techniques Were Designed for Many Small Information Flows – Not for Large Scale Flows
- This Consortium Is Designing and Developing New L1/L2
 Capabilities That Can Provide Large Scale HPDM Services, Which Can be Used for Any Data Intensive Application, Not Just Digital Media
- Key Attributes: Capacity, Flexibility, Quality, "Green"
- The Consortium Is Designing a Service Specifically for Implementation at GLIF GOLES, and Related Facilities
- The Consortium is Working With Others In the GLIF Consortium on A Common Architecture that Is Defining a New Types of Network Service and Related Network Interface
- This Connection-Oriented Service Can Be Dynamically Provisioned

HPDMnet is a GLIF Participant, Global Lambda Integrated Facility

GLIF World-Scale Lambda-based Laboratory for Application and Middleware Development

Layer 2 Topology

Key Motivations (Part I)

Design and Development of Dynamically Provisioned Specialized Services

Based on New Services Architecture and Innovative Technology Models – e.g., Connection Oriented Services, Stateful Services

➤ Meta Context = SOA

Top Layer Services Are Encapsulated Processes -- Software Objects

Mid and Low Layer Processes Also Encapsulated As Software Objects, Including Supplemental Utility Processes and External Processes, Enhanced Virtualization With Much Better Methods for Ad Hoc Integration

➤ Basic Physical Layer Approach = Infrastructure As a Service (IaaS) All Physical Resources Are Encapsulated And Integrated As Software Objects

Key Motivations (Part II)

- ➤ Create a Permanent International Experimental Testbed Facility Design, Develop, Implement, and Operate a Permanent International Large Scale Experimental Research Testbed, Based on Optical Channels That Provides for Programmable Capabilities, Including Topologies.
- ➤ Highly Distributed Connections Control & Management Design and Implement Interfaces To Facilitate Creation, Control and Management of Connections/Topologies, Allowing for Highly Distributed Control and Management Processes – Including Global Topologies Within Desktop Icons Single Click To Instantiate a Global Network!
- ➤ Applications Control & Management
 Allow for Interfaces for Adding Functionality, After Connects Are
 Established (e.g. CHRONOS, Advance Reservations System)

Key Motivations (Part III)

- ➤ Create a Permanent Service at GLIF GOLEs That Will Provide Capabilities for Data Intensive Applications Using New Services Architecture and Technology Models (Initially a Prototype Service)
- Create Application-Oriented Services -Specialized Application Clients and Processes That Are Network Path/Topology Aware
- ➤Interconnections With Repositories

 Design and Implement Capabilities for Content Resource

 Discovery and Use

Virtualizing Networks

- Networks Can Be Virtualized Such That They Appear As a Set of Software Resources That Are Accessed by Grid Services
- The Virtual Resources Approach Can Be Used To Partition a Network into Multiple Sub-Networks That Can Be Provisioned and Re-configured Within a Single Domain or Across Multiple, Independently Managed Domains
- Import Resources From Other Network Domains To Create End-to-End Solutions
- Export Resources To External Environments --
- Network Administrators Can Create Subsets of Their Network and Give Control of Those Resources To Other Network Providers Or To Their End users
- Users Can Also Join or Divide Lightpaths and Give Control and Management of These Private Sub-Networks to Other Users or Organizations
- Using the Virtual Resources, These Networks Can Be Reconfigured By the End-User
 Without Any Interaction By the Network Manager

Does Software Exist That Can Accomplish These Objectives? -Yes Demonstrated at Multiple Conferences

About UCLP / Argia

- Argia = Production Grade Version of UCLP
- Argia = Middleware Allowing End-Users (People or Applications) to Treat Network Resources as Software Objects and Provision and Re-configure Lightpaths Within a Single Domain or Across Multiple Managed Domains
- Users Can Also Join or Divide Lightpaths and Give Complete Control and Management of Private Sub-Networks to Other Users or Organizations
- Argia Enables the Virtualization of a Network That Can Be Reconfigured By the End-user Without Any Interaction By an Optical Network Manager
- Argia™ Can Be Used for Virtualization and Control of Optical Networks
- http://www.inocybe.ca

Physical Domain Management

Manage Networks With Traditional NMS Functionalities

Pacific Wave 💢

Multi-Domain Control

 The Network Admins First Create Physical Network for Their Domain.

 Today, There Are Four Domains in the HPDMnet under the Control of Argia-- Pacific Wave GOLE, STARLight GOLE, CANARIE Net and Nortel Networks

Creating Virtual Resources

- Resources Are Virtualized So They Can Be Given To Other Organizations To Use Completely Under Their Control W/O a Central Authority
- Resources From Different Independent Domains Are Exported to iCAIR To Be Used To Create the HPDMnet

 Resources are imported by the Argia Administrator at iCAIR

Complete the Resource List: The HPDMnet Testbed !!!

- Links Are Created Between the Edge Interfaces of Each Domain to Create the Final HPDMnet Resource List
- Users of the HPDMnet Can Create Connections, Reserve Resources via Chronos, Partition or Bond Resources, etc., All Without a Need To Contact Network Administrators from Each Domain

Login in Chronos

To Start Using Chronos, Login Is Required.

Copyright @ 2008 Inocybe Technologies Inc. All Rights Reserved.

Endpoints View

In this view you can see the list of the endpoints available.

Creating a Reservation

 Click on 'Create Reservation'

- This Form Is Opened
- All the Fields Must Be Filled-In
 - Source
 - Target
 - Bandwidth
 - Delay (not used currently)

Reservations View

In this view you can see the list of the reservations created.

CERNLight

HPDMnet AAAS Demonstrations Feb 2009

4K Digital Media Over HPDMnet

4K Digital Media Over HPDMnet "Almost" 7X24.

iCAIR Can Access HD/4K Content From 4K EVL or UvA Servers. BTW: SAGE Is Supported on a Laptop!

iCAIR HPDMnet Demonstration at SC09 Portland Oregon

VirtuLab Tile Display: Directly Connected To National 10 Gbps Testbed With Core at the StarLight Facility

Demonstration: Integration of Fenius and HPDMnet Argia Global Lambda Grid Workshop CERN

Poznan 4k Initiative Demo at Global Lambda Grid Workshop CERN 2010

Bartosz Belter and Colleagues

CERN Fireworks Demo at Global Lambda Grid Workshop CERN 2010

Further Information

Ref: www.hpdmnet.org

Joe Mambretti, iCAIR Inc.

j-mambretti@northwestern.edu

Hervé Guy, CANARIE Inc. herve.guy@canarie.ca;