

Open Source DRAC

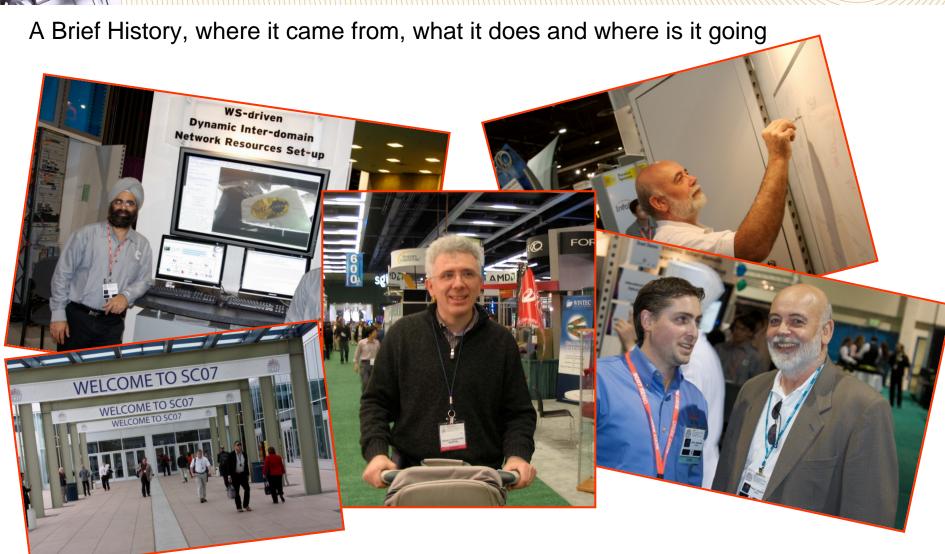
Bram Peeters, Rodney Wilson (Nortel), Hans Trompert GLIF Annual Global LambdaGrid Workshop October 28th, 2009 – Daejeon, Korea

Contents

- 1. DRAC / SURFnet history
- 2. DRAC what does it do, some technology
- 3. Open Sourcing: timing, community
- 4. Future/Feature development

Nortel DRAC Announcement

- In order to fully realize the potential of DRAC, to meet the needs of our R&E collaborators... and others


Nortel is announcing our intention to make DRAC available for the GLIF Community under an Open Source License

- official position is it will take 6 months
- we hope and expect to do better

Dynamic Resource Allocation control (DRAC)

Original Concept

The Interaction between Apps and Nets

It is time for a new balancing act reflecting the increased sophistication in both application's demand and network's supply

Today

- Total separation of concerns has met portability and scalability design goals
- Applications "see" the network through peepholes like TCP CC (ubiquitous) or RAPI-like control (limited, with dialects)
- End systems and providers are latched onto independent evolution curves

Tom'w

- Applications see the net as a 1st class manageable resource (akin to cp., storage)
- Applications exploit net info surfacing through a semi-porous layer
- Applications can directly drive net resources within an envelope
- Software constructs aptly handle polymorphism and dynamic feature introspection
- Providers move up the value chain in synergy with end systems' curve

NORTEL NETWORKS CONFIDENTIAL

09/01/2003 002 protect - 3

Original Project definition

The CO2 project

Goal: Re-define the interface between applications and network.

Applications to directly drive network resources within an envelope, while continuously absorbing custom reports on operational status.

- CO2 <u>abstracts the network's "knotis and dials"</u> and exposes a programmatic access
 to them (i.e., no point-and-click), while shielding application investments from
 network churn (e.g., due to different knobs, different network gear)
- CO2 acts as a <u>virtual</u>, "hands-free"; patch-panel bridging N partitions of a data center with the M network paths to its on-demand users
- CO2 gives applications the means to schedule connectivity, define logical VPNs; monitor SLAs, receive custom not fications from the network, etc.

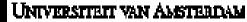
CO2 features includes

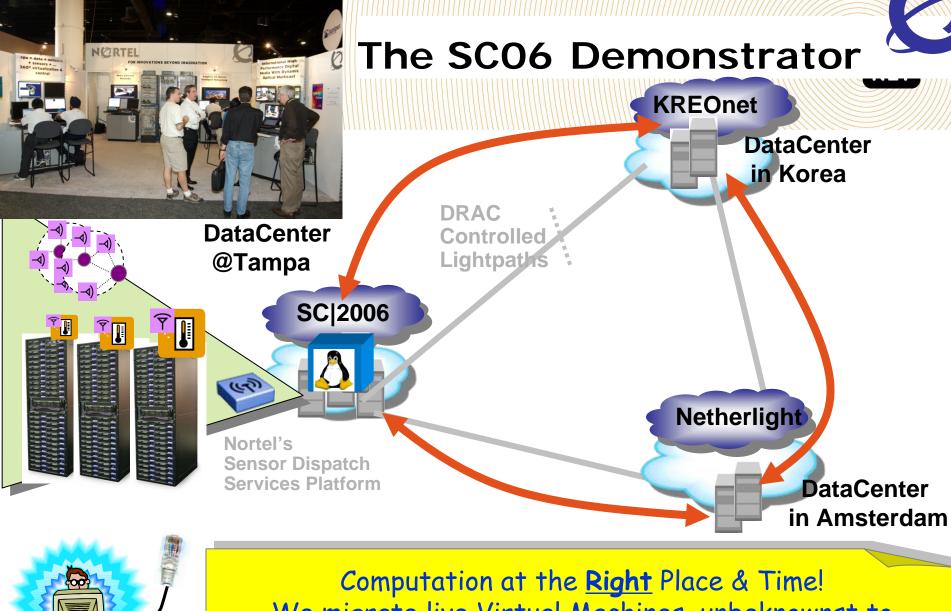
- <u>Custom QoS management</u> including scheduled connection service, client-operated optical <u>VPNs</u>, SLA monitoring and verification, differential pricing, custom error notifications, diversity formulations, bandwidth defragmentation, <u>3rd party scripting</u>
- Upward de-coupling (from the application, via XML, CIM) and downward decoupling (from the network, via pluggable signaling elements)

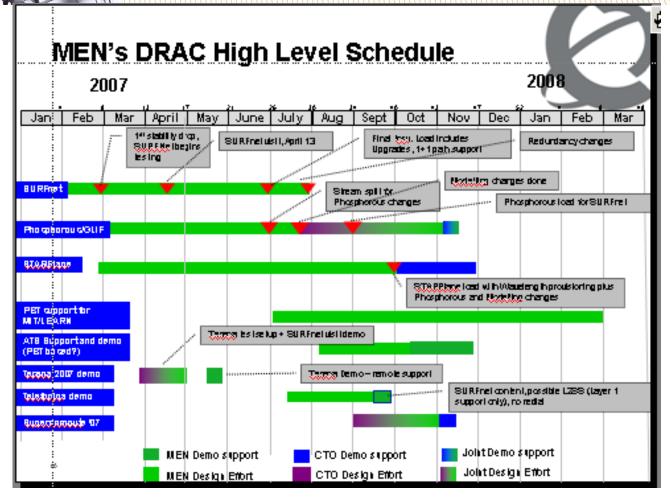
Early demo's

Amsterdam Chicago Application Application control control Services Services Services AAA DRAC DRAC DRAC DRAC data data SNMP ODIN AS TN Netherlight OMNInet Starlight | UvA

- * Dynamic Resource Allocation Controller
 - finesse the control of bandwidth across multiple domains
 - while exploiting scalability and intra-, inter-domain fault recovery.
 - thru layering of a novel SOA upon legacy control planes and NEs







We migrate live Virtual Machines, unbeknownst to applications and clients, for data affinity, BC/DR, load balancing, or power management

2007-2008 DRAC R&D

- DRAC a key enabler for Service Oriented Applications. SOA
- A vehicle for bandwidth control and SLA enforcement
- Virtualization of Layer0- Layer 3 services
- Creation of portable code for other platforms

SURFnet and DRAC

- Dynamic services: part of SURFnet6 2004 tender
 - "CO2" was proposed
 - Nortel developed this into DRAC
- Target: dynamic network services, available before the end of the SURFnet6 project time
- SURFnet service launched at the end of 2008
 - Operational procedures in place
 - DRAC reliable enough for a SURFnet service
- Dynamic Network Services remain core part of the future developments

What does DRAC do

"Dynamic Resource Allocation Controller"

- Abstracts network for user
- Abstracts network for application
- Allocates (network) resources
- Provides generic interface for resources
- Manage resources: access control, group management
- Has provisions for
 - Multi-layer provisioning
 - Multi-technology provisioning
 - Multi-domain provisioning

Initial operational design constraints?

SURF/net

GigaPort →

Creating a manageable service

Finding the right place for management functions

Service users

- Get registered with group(s)
- Log on
- Schedule services within group
- Use service
- Verify service

Group manager

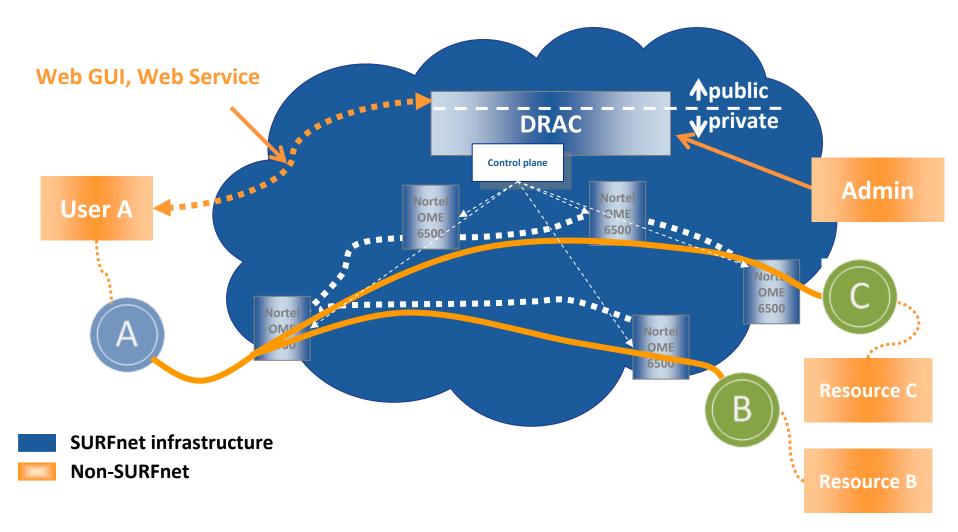
- Add users to group
- Manage selected user rights
- Get the accounting of service usage
- Request more ports!

Service manager

- Add network resources to DRAC
- Create groups
- Assign port resources and policy to group
- Allocate to group manager

Network operators

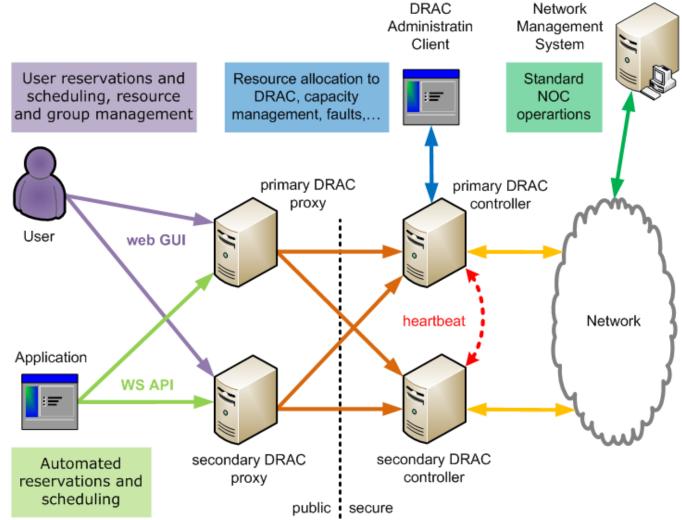
- Know about the service
- Manage network incidents
- Don't provision on DRAC resource!


USER COMMUNITY

SURFNET

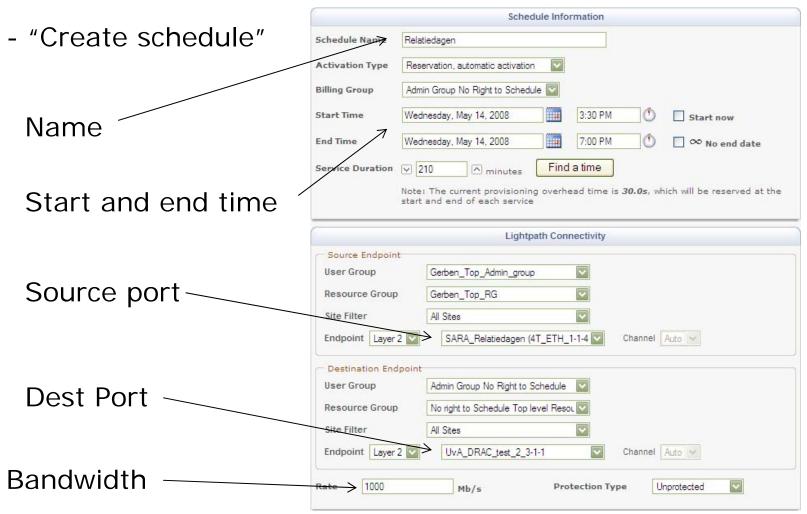
Basic service in SURFnet

DRAC Setup

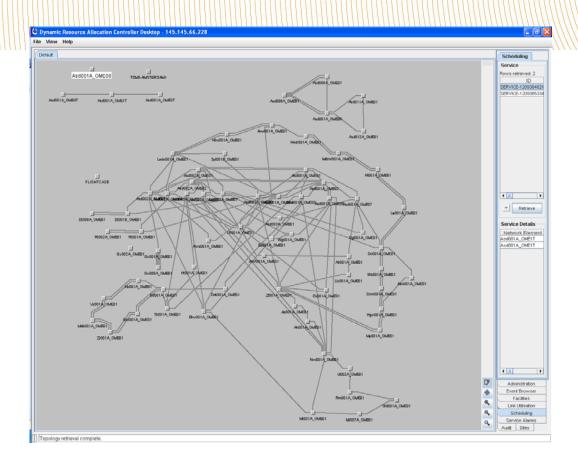


- Server-based control plane
 - No need for additional network hardware
 - Clear user-network interface
 - Simple upgrades, monitoring, bug fixing
 - Server provisions network using TL1 or SNMP
 - Added security by user access through proxy
 - Redundant proxy and controller setup

DRAC Tools and Interfaces



Web GUI



Administration interface

- Separate GUI to manage network-side of the service
 - Allocate resources to DRAC
 - Check service routing on the network

- ...

Services supported

Currently:

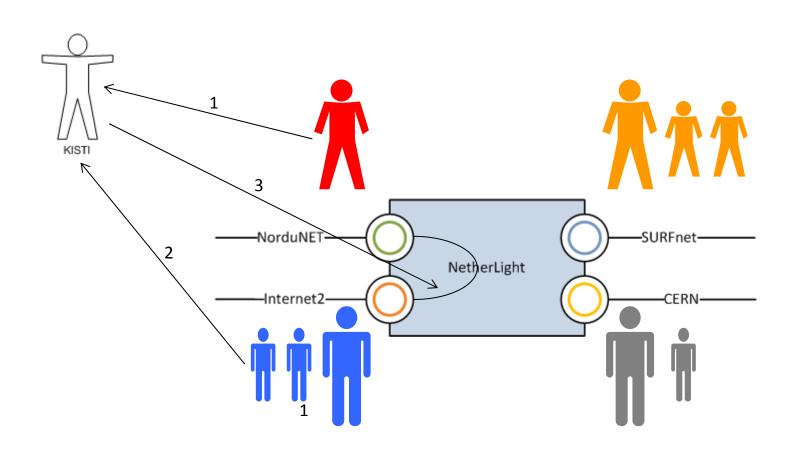
- Provisioning single or protected paths
 - Scheduled, repeatable, finds first timeslot,...
 - Between transparent GE (L2) ports
 - Between GE port and STM64
- Clear administrative separation from other service
 - Bandwidth management
- Group and policy management
- On Nortel OME6500 boxes
 - And proof-of-concept CPL (DWDM) control
- Has interworked in Phosphorus, with IDC,...

Next week:

- Using L2SS: VLAN to GE, VLAN to STM64
- Incorporates handles for all VLAN management

Principle: NO limitation on vendor, equipment

SURF NET


Group management

- Resource management essential for these services
 - What ports "belong" to whom
 - Who can connect, and for how long/much
 - "Ownership" has to be delegatable/transferable
- Network operator defines top level groups
 - Agreement level...
- Owner of groups can allow any kind of use
 - Subgroups
 - And Subgroups of subgroups...

NetherLight DGOLE Policy Concept of User Groups

Current Approach

The Open Source concept

- Nortel is committed to making DRAC open source
 - Available to whole GLIF community
 - And beyond ; -)
- Time frame currently officially April
 - Need to finalize legal details (IPR etc)
 - Will be a GPL v3 licence
 - Review to ensure
 - proper front door security of web GUI and WS API
 - correct implementation of proxy-server security setup
 - Final check on potential license conflicts in source components

Open Source Community

DRAC will be "opened up", what next?

- Collaboration platform with
 - Source code repository
 - Bug tracking system
 - Documentation WiKi
- Create a structure round it
 - Legal organisation?
 - NFW NAME
 - Managing contributions
 - Making it easy to contribute
 - Making it easy to implement
 - Managing roadmap for the community
 - Managing roadmap for the technology

Activities to precede going Open Source

- Review, approval of Nortel Business Administrators
- Code preparation in accordance with license requirements
- Security audit to ensure safe and controlled user access to the network resource.
- Documentation
 - Tutorial/Instructional Material
 - Architecture/Philosophy documentation
 - overall architecture & philosophy & history/vision
 - document/list of items to fix or improve
 - e.g. RMI vs socket messaging (currently we use a mix of both), OME control plane support, Limitations
- Define the (collaborative environment) organization of the first year

Main technology roadmap items (could be...)

- Other vendors!
- Layer 2 support
 - VLAN support being built in at the moment
 - Generic switch support / SNMP adapter?
 - Carrier Ethernet support? PBB-TE, MPLS-TP, MPLS,...?
- Interdomain features
 - Abstracted networks, Fenius, NSI?
- "Features"
 - Planned works management?
 - Network incidents, service monitoring?
 - Group management => federative approach
 - ...

What needs to happen

Talk to us!!!!

And have a look

http://drac.surfnet.nl/

User name: GLIF2009

Password: Glif2009! (capital sensitive!!)

Note: reservations can be made, will fail to provision