

# Rod Wilson, Director External Research Metro Ethernet Networks NORTEL Research Labs, Ottawa Canada

October 22, 2009

## Dynamic Resource Allocation Control (DRAC)



- Original concept called CO2 implying optical bandwidth content on demand as required by Applications.
- With help from Marketing it became DRAC
- Developed in 2004 by my Nortel colleagues Franco Travostino, Bruce Schofield and Inder Monga.



- Nortel Research has presented experimental evolutions of DRAC as a GLIF participant and at SC04 →SC07
- Development of DRAC has progressed over the past years, but there were insufficient market forces to expand the functionality to complete the vision.

### **DRAC Announcement**

 In order to fully realize the potential of DRAC, to meet the needs of our R&E collaborators... and others

Nortel is announcing our intention to make DRAC available for the GLIF Community under an Open Source License

- official position is it will take 6 months
- we hope and expect to do better

A technical presentation about DRAC follows later in the 9<sup>th</sup> GLIF annual meeting agenda.

Thank You

## **Dynamic Resource Allocation control (DRAC)**



## **Original Concept**

Observations

## The Interaction between Apps and Nets

It is time for a new balancing act reflecting the increased sophistication in both application's demand and network's supply

#### Today

- Total separation of concerns has met portability and scalability design goals
- Applications "see" the network through peepholes like TCP CC (ubiquitous) or RAPI-like control (limited, with dialects)
- End systems and providers are latched onto independent evolution curves

#### Tom'w

- Applications see the net as a 1<sup>st</sup> class manageable resource (akin to cpu, storage)
- Applications exploit net info surfacing through a semi-porous layer
- Applications can directly drive net resources within an envelope
- Software constructs aptly handle polymorphism and dynamic feature introspection
- Providers move up the value chain in synergy with end systems' curve



NORTEL NETWORKS CONFIDENTIAL

COZ protect - 3

## **Original Project definition**



## The CO2 project

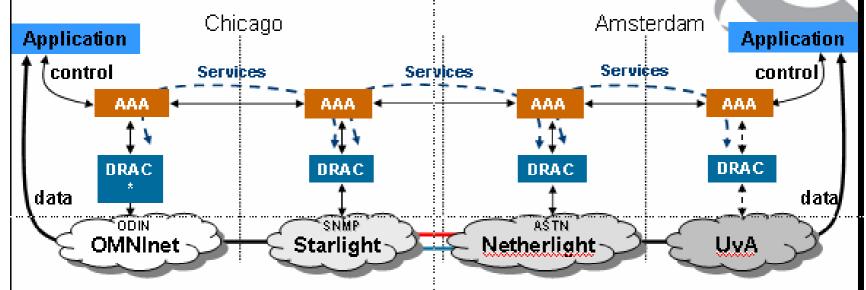
Goal: Re-define the interface between applications and network.

Applications to directly drive network resources within an envelope, while continuously absorbing custom reports on operational status.

- CO2 <u>abstracts the network's "knotis and dials"</u> and exposes a programmatic access
  to them (i.e., no point-and-click), while shielding application investments from
  network churn (e.g., due to different knobs, different network gear)
- CO2 acts as a <u>virtual</u>, "hands-free" patch-panel bridging N partitions of a data center with the M network paths to its on-demand users

#### CO2 features includes

- <u>Custom QoS management</u> including scheduled connection service, client-operated optical VPNs, SLA monitoring and verification, differential pricing, custom error notifications, diversity formulations, bandwidth defragmentation, 3rd party scripting
- Upward de-coupling (from the application, via XML, CIM) and downward decoupling (from the network, via pluggable signaling elements)




## **DRAC Taxonomy**

## SC2004 CONTROL CHALLENGE



**BUSINESS WITHOUT BOUNDARIES** 



- \* Dynamic Resource Allocation Controller
  - finesse the control of bandwidth across multiple domains
  - while exploiting scalability and intra-, inter-domain fault recovery
  - thru layering of a novel SOA upon legacy control planes and NEs





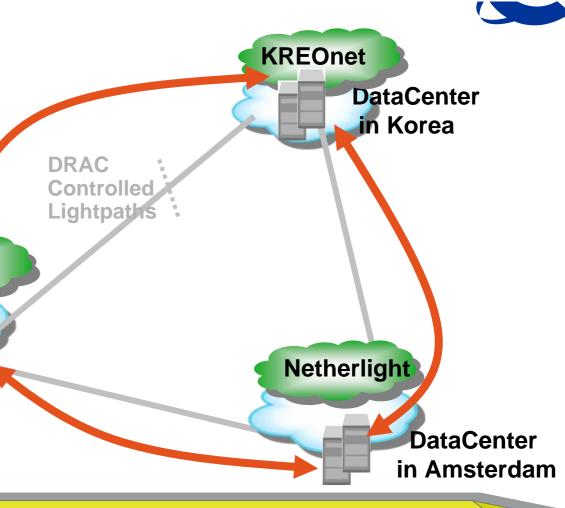















Universiteit van Amsterdam



## **The SC06 Demonstrator**





DataCenter @Tampa

SC|2006



Nortel's
Sensor Dispatch
Services Platform



Computation at the <u>Right</u> Place & Time!
We migrate live Virtual Machines, unbeknownst to applications and clients, for data affinity, BC/DR, load balancing, or power management

## **Activities to Precede Going Open Source**

- Tutorial/Instructional Material
   As html or apt (almost plain text) file snippets
- Review, approval of Nortel Business Administrators
- Architecture/Philosophy documentation
  - overall architecture & philosophy & history/vision
  - document/list of items to fix or improve
  - e.g. RMI vs socket messaging (currently we use a mix of both),
     OME control plane support, Limitations
- Code preparation in accordance with license requirements
- Define the (collaborative environment) organization of the first year
- Security audit to ensure safe and controlled user access to the network resource.