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Talk Summary
• We performed large-scale cosmological N -body sim-

ulation, on a “grid” of two supercomputers con-
nected via 10G line(s): Cray XT4 at CfCA/NAOJ
and Huygens(IBM p6/575) at SARA/UvA.

• Efficiency of calculation for production runs (20483

particles) is pretty high (better than 80%)

• (The communication throughput during the pro-
duction runs is less than impressive though...)

• For daily use, the main difficulty is how to schedule
two or more machines for single calculation...



Talk Overview
• Brief overview of NAOJ

• Brief overview of CfCA

• Cosmogrid Project

– Background
– What we tried to do
– What we have achieved so far
– Future directions



Brief overview of NAOJ
• National center for Japanese Astronomy

• Ground-Based observation facilities

– Subaru Telescope
– Nobeyama Radio Observatory
– Okayama Observatory, and several other small

telescopes

• Space Astronomy: Collaboration with ISAS/JAXA
(Akari, Hinode)

• Theoretical and Computational Astronomy





Subaru Telescope
Hawaii, Mauna Kea
8.2m mirror

Only eight-meter-class

telescope with a

prime-focus camera

(Suprime-Cam),

30 arcminutes field of

view (100 times that of

Hubble Space

telescope)

Plan to extend to

2-degree field of view

(Subaru HSC)



Nobeyama Radio Observatory

Started operation in 1982. First world-class ground-
based observation facility in Japan
Follow-up: ALMA (US-EU-Asia joint project,
observation will start in 2010?)



Other projects (incomplete list...)

• Hinode (Solar observation Satellite)

• TAMA300 (Experimental gravity Wave detector)

• VERA VLBI (Very Long Baseline Interferometer)

– Real-time signal processing
using optical network

• VSOP-2 (Space VLBI)



Center for Computational
Astronomy

Two goals:

• Theory group within NAOJ

• Computer Center for Japanese (and International)
Theoretical/Computational Astronomy



History
1965 “Domestic Computing Facilities ”

“for Artificial Satellites”

1988 ADAC (Astronomical Data Analysis center)

1988 Division Theoretical Astronomy

2006 reorganized to ADC (Astronomical Data Center)

and CfCA

A unique center dedicated to “Theory and Simula-

tion for Astronomy/Astrophysics”



Evolution of CPU power

(till 2001)

Year - log of computing

speed (12=1Tflops)

Open: U. Tokyo

Filled: ADAC/CfCA

1/10 — 1/100 of UT



Current System
• Vector-Parallel: NEC SX-9 16CPU+8CPU

• Scalar: Cray XT4 9 cabinets (812 nodes, 28.6TF)



CfCA Cray XT4



Front panel CG

Simulation: Takayuki Saitoh (CfCA/NAOJ)
Visualization :Takaaki Takeda (4D2U/NAOJ)



Cray box in ORNL, before and after
2008

before
after



We also have:

GRAPE-DR
Accelerator with the peak DP
speed of ∼ 1 Tflops/card
A 144-node system up and
running

Hardware completed. Tuning underway.



CosmoGrid Project
• Background

• What we tried to do

• What we have achieved so far

• Future directions



Background
• In “Principle”

– We want to do large-scale simulations which
are impossible on a single supercomputer, by
connecting multiple supercomputers with high-
speed grid.

• In “reality”

– One of the goals of “GRID” is the above. But
we rarely see successful examples of one single
large-scale calculation actually performed.

– If we can demonstrate a working example,
∗ We may be able to get large chunks of ma-

chine time (thus effectively make it possible
to do calculations not possible in single su-
percomputer center)

∗ This is interesting and potentially useful re-
search project.



Large-scale parallel simulations on
Grid?

• Lots of papers claiming “we did it”

• Almost all works are on job-level parallelism, us-
ing Grid-based job schedulers. Not a single large
calculation.

Why?



Large-scale parallel simulations on
Grid?

• Lots of papers claiming “we did it”

• Almost all works are on job-level parallelism, us-
ing Grid-based job schedulers. Not a single large
calculation.

Why?

Because Grid is a “parallel computer” which is

the most difficult to use

• Extremely small communication bandwidth
(1/1000 of a typical IB cluster)

• Impossibly large communication latency
(1000 times that of typical IB network)



Large-scale parallel simulations on
Grid? (cont’d)

So why to try the most difficult to use
environment?

• To get more cycles

• We will improve simulation algorithms

Latency-tolerant algorithms which are not
bandwidth-demanding

↓
High efficiency and high scalability on future

large-scale parallel machines



What we did
• Performed Cosmological N -body simulation

• On a grid of Cray XT4 of CfCA/NAOJ and Huy-
gens (IBM p6/575) at SARA/UvA connected by
10G network

• Test calculation with 2563 particles: successfully
completed

• 20483: Succeeded to run several timesteps on Grid.

• Currently developing softwares to use more than
to machines in EuroGrid.



What is a cosmological N -body
simulation?

Big bang

After Big bang, “hot”
universe starts to
expand
As the universe
expand, the
temperature drops

Density fluctuations starts to grow through gravita-
tional instability ← We simulate this process
Animations: (a)(b)

file:/home/makino/papers/cfca/tmp/4d2uLss640x480.mpg
file:/home/makino/papers/cfca/tmp/1G_58.mpg


What can we learn from simulations?
• How galaxies (or what accounts for about 85% of

its mass: dark matter halos) formed

• Theoretical predictions for mass and size distri-
bution of galaxies, spacial distribution (statistical
properties)

By comparing these theoretical predictions with ob-
servations, we can get some knowledge on what makes
up the dark matter:

• Mass of one particle, total mass

• If there are any interactions other than gravity

• etc etc...



Why Grid?
• State-of-the-arts calculations are truly of large scale

( N ∼ 1010)

• Number of steps is rather small (less than 105)

• Size of calculation limited by CPU speed, several
minutes per timestep.

• Parallelization very well studies and understood.

In other words,

• Very long latency (more than 100 msec) is okay,
since one timestep takes more than 100 seconds
and communication occurs less than 10 times per
step.

• Amount of communication is also small: O(N2/3).

• We do want to do large calculation. If using Grid
helps to get more cycles, then...



Grid Structure

The network environment itself is similar to the ex-
perimental setup used by Hiraki and coworkers. To
that setup, we connected two supercomputers at the
both end.



Network performance
• latency (ping rtt) 280ms

• Bandwidth: Cray XT4’s 10G card is the bottleneck. S2IO
Xframe with PCI-X interface, connected to AMD 8131.

• Cray-Cray loopback test (loop at Chicago or Amsterdam):
up to 6Gbps

Example of loopback
test
Horizontal: time
(seconds)
Vertical:measured
bandwidth (iperf,
MB/s)
About 600MB/s, after
first 15 sec.



Calculation code
• MPI within a site

• One of MPI nodes is dedicated to communication.
All communications with the other site is through
this “communication node”

• This “communication node” actually talks with
another I/O node with TCP/IP

• I/O nodes in two sites communicate with TCP/IP

Cray MPI nodes I/O

Network
node

IBM MPI nodesI/O

Network
node

東京 アムステルダム



Development of the calculation code
• In-site parallelization: used our existing code

(Developed by T. Ishiyama)

• Collection of data to the “communication node”:
Fairly easy

• Communication between I/O nodes: Various
performance tuning required. Prof. Hiraki knows
every tricks.

• Need to dynamically change the domain
decomposition to reach good load balance
(extension of what is done in in-site parallel code)

Nothing difficult, just a lot of bookkeeping...



How real experiments took place
• We ask collaborators to set up the network for

two weeks or so.

• Lots of troubles happen and ping starts to work
after ... days.

• More troubles happen in supercomputers...

International collaborative experiments are

very difficult.



Simulation completed so far
N = 2563 run
Communication performance (N = 20483, 1024 cores at both
ends)

Data size(MB) Time (sec) Fraction (%)
Calculation — 350 86
Grid for FFT 70 5.8 1.4
Particles exchange 770 51 13

• The calculation is already pretty efficient
(communications less than 15% of total time)

• A factor of 10 reduction of communication time should be
possible.

• For larger N , relative cost of communication decreases
(as N−1/3)

Grid of two machines in different continents is actually useful
for large-scale cosmological N -body simulations.

file:/home/makino/WWW/tmp/cosmogrid_256_v2.mpg


Caveats
Practical difficulties

• Both machines are operated with job-queuing
systems. How do we schedule two machines to
start the calculation at the same time?

• Can we exclusively use fast network for extended
period? (maybe note so severe: 1Gbps is fine)

Scheduling issue is critical if we are to do production
runs, not just a few experiments. Other users would
complain if we give Grid jobs special priority.



Possible solution for scheduling
(Not implemented yet, just ideas)

• Schedule two machines independently.

• When both machines are available do grid
calculation

• When only one machine is available continue with
non-grid run

• When the number of machines changes, migrate
the workload dynamically.

Theory is simple, but...



Summary

• We developed an N -body
code for cosmological sim-
ulation using NAOJ XT4
and UvA p6/575 con-
nected by 10G network.

• Performance of TCP/IP
communication is more
than enough

• In real calculation, TCP/IP performance is not impressive,
but still sufficient.

• In other words, we have shown this kind of calculation can
be run efficiently on multi-continent Grid.

• Practical issues: Do we (managers of computer centers)
want this kind of Grid jobs? How to schedule? Should
applications be modified to keep other users happy?



Numerical methods
• Wide range in both space and time

– Spatial: Gpc to 10 km (radius of neutron
stars)

– Time: Gyr to milliseconds

Numerical integration should ideally cover these
ranges.



Time domain: Individual timestep
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ti ti
�

(Aarseth 1963)

• Each star has its own

time and timestep

• Event-driven integra-

tion: — star with

minimum ti + ∆ti is

selected



Requirements for integration scheme
• High-accuracy predictor necessary

• Variable stepsize necessary

• Cannot use scheme which require the calculation
of acceleration at intermediate points (eg:
Runge-Kutta)

– Linear Multistep method OK
– Runge-Kutta not OK
– Symplectic schemes not OK



Space domain
How do we calculate the right-hand side of the
equation of motion?

For a while we forget about the individual timestep
scheme...

Widely used method: Barnes-Hut treecode
Widely know method: Fast-multipole method
(FMM)



Basic idea for tree method and FMM

Force from
distant
particle:
Weak

↓

Can’t we
evaluate

many forces
at once?

Tree

FMM

• Tree: aggregate stars which exert the forces

• FMM: aggregate both side



How do we aggregate — Barnes-Hut
tree

Use tree structure

• First make a cell with

all stars in it

• Recursively subdi-

vide the cells to 8

subcells

• Stop if there is small

enough stars




