GLIF, the Global Lambda Integrated Facility Measuring the use of the hybrid network

Erik-Jan Bos Managing Director SURFnet Minneapolis, MN, USA February 14 & 15, 2007

The hybrid network enables a range of services

- Previous NREN generations offer only IP services
- The hybrid network offers services at different levels:

-IP

- Sub-lambda lightpaths (GFP-F / VCAT / LCAS)
- Full lambda lightpaths
- Using modern network equipment and control plane, the NREN can make lightpaths more dynamic
 - Easy configuration for static lightpath services
 - User controlled lightpaths: scheduled or dynamic

New metrics needed to measure usage in hybrid network

- Previous generations reported primarily on IP traffic
 - Metrics, measurement methods and tools are well known
 - Byte count provides sufficient information for many purposes
 - Graphs are easy to understand
- Lightpaths are different
 - Connection oriented
 - Static, scheduled, or dynamic

Start by mapping services to network capabilities

- General public and policy makers: – need to justify funding
- Connected organizations:
 - need to understand use of the service
 - need to justify costs
- Network operator:
 - need to allocate costs (at least internally)
 - -need to plan network build-out
 - need to make routing decisions

Different stakeholders, different levels of complexity

glif

General public & policy makers: justify spending money

- This group requires simple metrics: easy to explain, easy to understand
- Clear link to the value delivered through the network

General public and policy makers: keep it simple

 Simply count all the bytes transported by the network

General public and policy makers: keep it simple

• ...and report total capacity provided for all services

Connected organizations: understanding service delivered

- Want to understand price/performance
- Want to pinpoint capacity bottlenecks
- May want to charge internal user groups
- Therefore:
 - More detail, less aggregation
 - Easy access to information
 - Different timescales

10

Connected organizations: more detail, less aggregation

• Separate reporting per service delivered:

-IP:

- Packets and octets, peak and average, at different timescales
- Packet loss
- Flow monitoring above the IP layer?
- Static lightpath:
 - Interface capacity
 - Transport bandwidth delivered to the interface
 - Octets transported?
- Dynamic lightpath:
 - Interface capacity
 - Transport bandwidth requested and granted

• Percentage of time active, number of requests, number denied SURF: net Octets transported?

Network operator: accounting and charging

- Most NRENs have very simple pricing schemes – no need for detailed charging per customer
- However, they still need to make pricing decisions based on actual facts
- Therefore they need to understand:
 - the use of each service
 - the resulting claim on resources
 - and the cost of each resource

Network operator: mapping to resource usage

- Report on the services delivered
 - Same metrics as provided to connected organizations
- Infrastructure
 - Static resources used by each service
 - e.g. IP connection using *n* VC-4's on a given link
 - Variable resources used by each service
 - e.g. dynamic lightpath using *n* VC-4's on average, *m* peak, *x* % of the time

Network operator: mapping service to use of infrastructure

Network operator: network planning and design

- NREN needs to pinpoint bottlenecks...
 - preferably before they become bottlenecks!
- ... at each layer in the network
 - -but not in isolation: each layer is related to the others
- ... at each device and each link
 - but not only at the local level: bottlenecks may be resolved by re-routing
- ... at different timescales
 - busiest hour, busiest day...

Network operator: local capacity monitoring at each layer

From local to global: build up an end-to-end traffic matrix at each layer

IP Traffic (Mbps/sec) (peak day, peak hour)

	University A		A University B	Ups	tream				
Organization Site	Site: A1 A		Site:	othe i		$(VC_A'e)$	etatio dun	amic	
University A			(peak day, peak hour)						
Site A1 Site A2	- 0,2	0, -		Univer	sity A	University B	IP Routing	GEANT	
University B			Organization Site	Site:	Α2	Site: B1			
Site B1	0,1	-	University A		7.2				
Upstream	0,3	-	Site A1 Site A2	2	1	2/14 -	14 2	14	
			University B						
			Site B1	2/7	-	-	7	7	
			IP Routing	14/7	2	7	-	-	
U R F, net		,	GEANT	14		7			
1								S	

Network operator: capacity planning for lightpath services

- IP is packet switched, but lightpaths are circuit switched just like telephony
- The telephony world has a good capacity model: the Erlang model
- So can we use the Erlang model to predict capacity requirements in the lightpath environment?

- The Erlang model assumes:
 - Stochastic distribution of arrival times
 - Stochastic distribution of duration
- Why does this work for telephony:
 - Very large number of potential callers, each contributing very little, with independent reasons for calling
 - All calling at random times → Poisson distribution
 - Negative exponential distribution of duration
- Why does this not work for lightpaths
 - Small number of potential users at this time
 - Limited number of applications at this time

Accurate forecasting of lightpath use will not be possible

- New service

 no data to extrapolate from
- Small number of applications → large impact from use patterns of each application
- Small number of users → large impact from a single user decision
- Example: imagine an organization offering a remote backup service across scheduled lightpaths
 - What time does a scheduled backup start? Probably at 20:00 or 0:00
 - How long is the backup scheduled for? One hour, or two.

• Fairly predictable pattern, but a change in backup strategies

SURF / nectan disrupt the pattern

Therefore: augment data from the network with knowledge

• Measure the use of resources in the network

Questions?

Potential metrics, layer by layer

- Layer 0: fibers and lambda's
 - -kilometers of cables and fibers
 - -fibers lit
 - lambda's available in WDM systems
 - -lambda's in use and total bandwidth, by use type:
 - used for higher network layers
 - used as static lightpaths
 - reserved for dynamic lightpaths
 - use of dynamic lambda lightpaths:
 - bandwidth x hours of use
 - number of set-up requests
 - experienced blocking probability

SURF; net transported?

- Layer 1: optical switching
 - -number and size of lightpaths provided, by use type:
 - used for higher network layers
 - used as static lightpaths
 - reserved for dynamic lightpaths
 - use of dynamic sub-lambda lightpaths:
 - bandwidth x hours of use
 - number of set-up requests
 - experienced blocking probability
 - octets transported?

Potential metrics, layer by layer

- Layer 2: Ethernet aggregation
 - number of interfaces
 - -lightpath bandwidth
 - -aggregation ratio
 - -number of frames transported, dropped, errored
 - number of frames, by upper layer protocol
 - octets transported

- Layer 3: IP
 - number of interfaces
 - -transport capacity per interface (lightpath bandwidth)
 - packet loss
 - -packets transported: IPv4/IPv6, unicast/multicast
 - octets transported: IPv4/IPv6, unicast/multicast
 - -protocols above IP (netflow)

