GLIF Control Plane meeting

Chair: Gigi Karmous-Edwards and Secretary: Licia Florio

Feb 8th and 9th, 2006 GLIF Interim meeting

Feb 8-9th Control Plane Agenda

Feb 8th

- 3:30 Agenda Bashing
- 3:45 Relation between Control Plane, CDS and NDL Jeroen Van Der Ham

4:30: -

- Feb 9th
 - 8:30 Practical Demonstrtion of Network Descriptions Andree Toonk
 - 9:30 Common Service Definition Jerry Sobeiski
 - 11:00 Management Plane vs. Control Plane Gigi Karmous-Edwards
 - 1:00 Joint session w/ Tech

Control Plane Challenges For GLIF Migrating towards Automation.... Taking one baby step at a time ...

- CIM Common Information Base translation of repository to machine based
- Common Services repository
- WEB services based services towards automation
- Translation of administrative policy to low-level policy for automation
- Scheduling services
- Automated Testing and monitoring
- Control plane protocols
- Policy and Security
- Interdomain routing

One Definition of Control Plane

"Infrastructure and distributed intelligence that controls the establishment and maintenance of connections in the network, including protocols and mechanisms to disseminate this information; and algorithms for engineering an optimal path between end points." Draft-ggf-ghpn-opticalnets-1

Centralized vs. Distributed...

Centralized (vertical)

Distributed (Horizontal)

Control Plane Functions

- <u>Routing</u> Intra-domain and Inter-domain
 - 1) automatic topology and resource discovery
 - **2) path computation** (*How do we use the infrastructure*)
- <u>Signaling</u> standard communications protocols between network elements for the establishment and maintenance of connections
- <u>Neighbor discovery</u> NE sharing of details of connectivity to all its neighbors (very powerful tool)
- <u>Local resource management</u> accounting of local available resources

Control Plane

"Planes"

- Global ("like SS7")
- Distributed and resilient
- •Non-manual, i.e., automated
- Separated from the data plane

Network-wide, global, comprehensive, distributed, automated software system that enables interoperability, responsiveness, flexibility, enhanced access to network resources, and, speed and efficiency gain

Functions' Migration

	Traditional Approach	Emerging Approach	
Functions	Mgmt	Mgmt	Control
Fault management	X	X	X
C onfiguration of services (planned)	X	X	
A ccounting	X	X	
P erformance Management	X	X	X
S ecurity		Х	
Configuration of services (signaling)			X
Connection management		Х	X
Routing		Х	X
Auto-discovery			X
Generation of call "service" records			X
Generation of demand capacity			X

Alanqar, W., Jukan, A.: "Extending End-to-End Service Provision and Restoration in Carrier Networks", IEEE Communications Magazine, Jan 2004.

Control Plane "Drivers"

Control Plane Focus today

Network Configuration
Network Recovery

GMPLS IP Control Protocols:

Signaling: RSVP-TE Routing: OSPF-TE based on Link State protocols (LSA) Discovery: LMP Also, Non-GMPLS control plane signaling for OBS

IP protocols: LMP, OSPF-TE

LMP Functionality:

- Link Connectivity verification
- Link parameter correlation
- Control channel management
- Link Fault utilization

•OSPF : Link State Routing protocol

- •LSA Link state advertisements
- •This collects TE information to build a Topology database

RSVP-TE

Separate control link for RSVP-TE messages

Network model:

- 1) Overlay- no routing between the client and the network
- Augmented separate routing instances, but some info is passed, ii.e IP destination address
- 3) Peer single routing instance between client and network

TE - Traffic Engineering

<u>TE GOAL</u>: is to facilitate efficient and reliable network operation and network optimization.

Results in:

- minimization of loss
- minimization in delay
- •Maximization of throughput
- Enforcement of SLA's

TE routing is not just based on static "link cost" but rather multiple constraints:Bandwidth, Availability, Latency, and link cost.