

Inter-domain progress between US and Japan

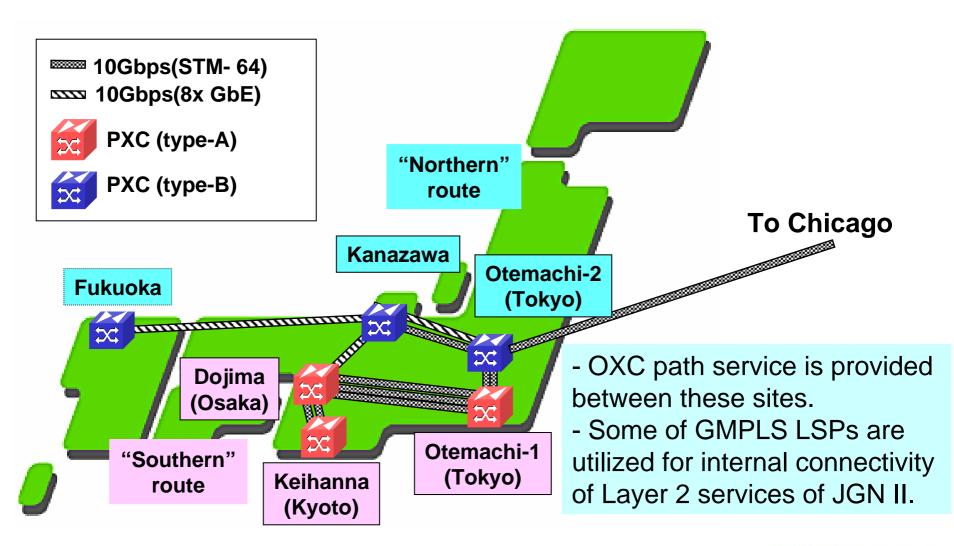
Tomohiro Otani

NICT Tsukuba RC, Japan KDDI R&D Laboratories, Inc.

Agenda

- Introduction of JGN II project
- GMPLS E-NNI
- Experiment between US and Japan
- Standardizing activity in IEFT

What's JGN II ?

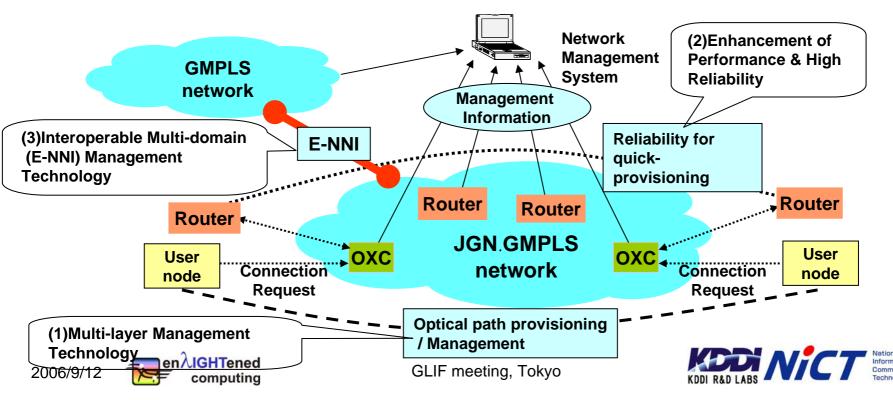


- R&D network testbed for universities, research institutions, and companies
- Non-commercial use only
- 64 access-points on every prefecture
- JGN II has been operated by NICT, since April 2004.
- Some international lines (Japan-US, etc)
- An introduction of GMPLS and photonic cross connects (PXCs) technologies to a backbone network.
- JGNII provides optical path service by using GMPLS and PXC technologies as well as L2 or L3 service on top of the GMPLS network.

Overview of JGN II GMPLS network

2006/9/12

en AIGHTened


GLIF meeting, Tokyo

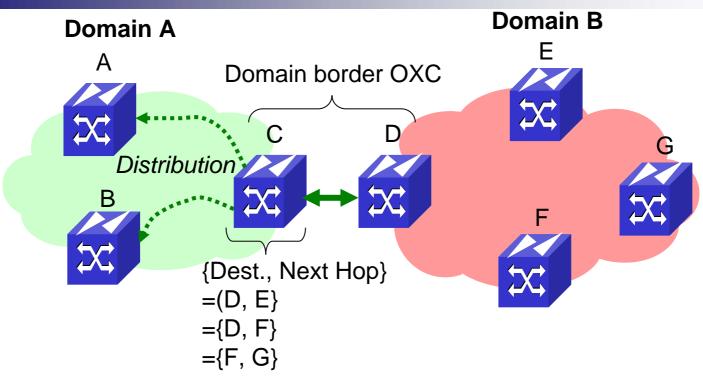
GMPLS related research activities

Multi-layer management technology

- Lambda-LSP provisioning network management and control mechanism
- Application driven network control and management technology
- Enhancement of performance and reliability of GMPLS Network
 - Reliability of control plane as well as data-plane, including line monitoring
- Interoperable multi-domain (E-NNI) management technology
 - GMPLS Interworking between multiple domains

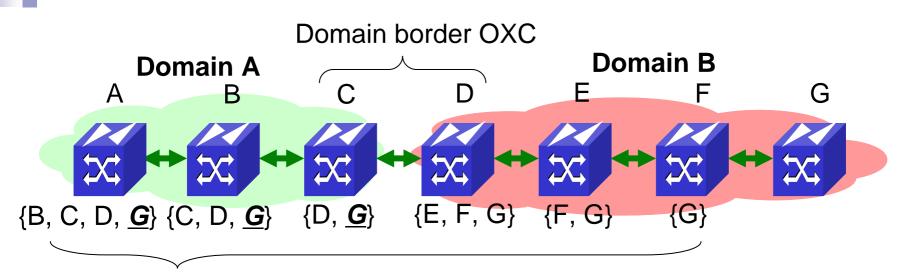
GMPLS E-NNI

 GMPLS External Network - Network Interface
GMPLS routing & signaling mechanisms over multiple GMPLS domains.


This new protocol is designed to allow GMPLS end-to-end LSPs (Label Switched Paths) that traverse the domain boundary to be setup and torn down without exposing internal routing information of the individual networks.

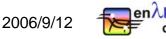
Routing mechanism

- Static route information is configured.
 - No IGP is running between domains to conceal the detail topology.
 - Dynamic routing mechanism is under investigation.



2006/9/12

Signaling mechanism



Contents of the ERO

*Underlined and bold characters indicate the loose hop destination

Per-domain based path computation is applied

- RSVP-TE loosely hopped signaling
- Path computation at the domain border node

Evaluation of E-NNI

GMPLS RSVP-TE signaling

□ Lambda LSPs could be successfully created over multiple domain.

GMPLS OSPF-TE routing

- □ Static routes were configured on domain-border nodes.
- Dynamic routing exchange is under investigation
 - IETF standardizing activities
 - BGP-4, PCE, etc.

GMPLS E-NNI between Japan and U.

Collaboration of

Both testbeds support high-end scientific and network research in their respective countries by using Generalized Multi-Protocol Label Switching (GMPLS) to setup and control end-toend optical circuit paths.

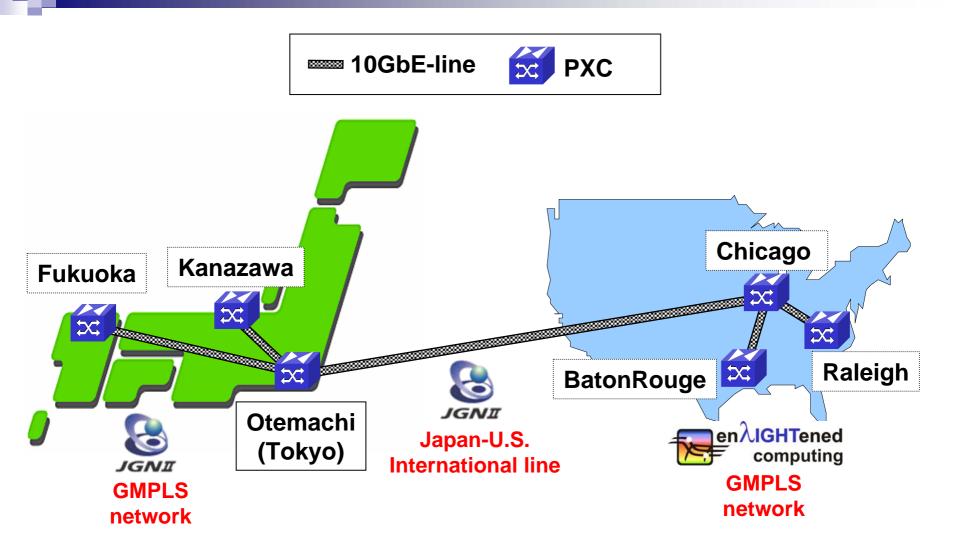
E-NNI experimental overview (1)

Protocols

- LMP (Link Management Protocol)
- □ RSVP-TE
- No routing information (ex. OSPF-TE) between border PXCs
- Control plane setup
 - Direct L2 connectivity between Tokyo PXC and Chicago PXC
 - □ Addressing: Local IP address
- Configuration of border PXCs
 - Next hop to peer in the external domain

E-NNI experimental overview (2)

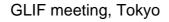
- TE-link information
 - Unnumbered
 - Lambda Switch Capable
 - □ 10GbE
- Data plane network
 - Japan domain: JGN II GMPLS network
 - U.S. domain: Enlightened Computing GMPLS network
 - International circuit: JGN II international line (10GbE) between Tokyo and Chicago


Time-zone difference between Japan and U.S. made configuration coordination challenging!

Test configuration

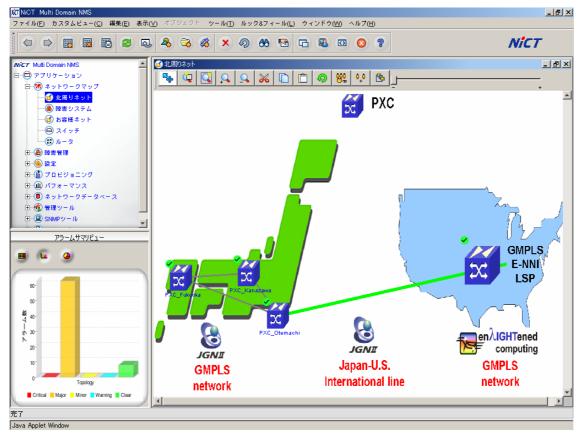
2006/9/12

GLIF meeting, Tokyo



- LSPs could be successfully demonstrated between different pairs of sites in the US and Japan without exposing the topology information.
- The GMPLS signaling was completed within about 600 ms, although the data plane connectivity was established with the order of 30 second including layer 2 and 3 connectivity establishment.
- Future action items
 - Transit functionality evaluation
 - Multi-layer operation (Currently lambda) considering layer 2

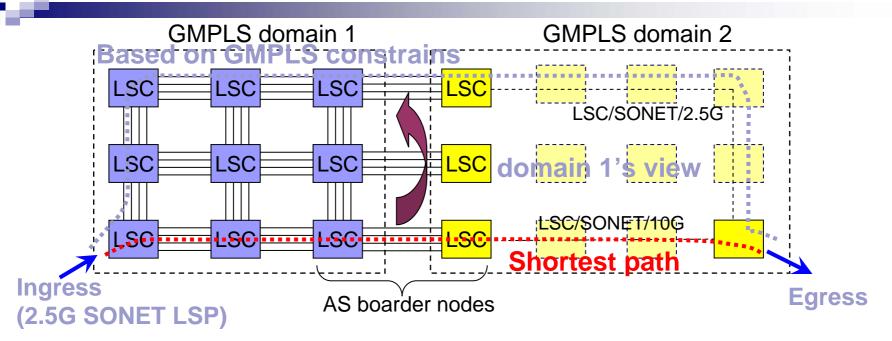
Etc.



E-NNI Network management system

Network management tools for the internal purpose.

- Managing the E-NNI connection
- □ Managing the GMPLS-based BoD service


GMPLS Inter-domain Traffic Engineering Requirements

draft-otani-ccamp-interas-gmpls-te-04.txt

Tomohiro Otani otani@kddilabs.jp Kenji Kumaki ke-kumaki@kddi.com Satoru Okamoto okamoto.satoru@lab.ntt.co.jp Wataru Imajuku imajuku.wataru@lab.ntt.co.jp

GMPLS inter-domain TE requirement overview

- Comparing from the MPLS inter-domain network model, the GMPLS inter-domain network model should consider below constrains:
 - □ Switching capability of nodes: TDM-SC, LSC, FSC
 - □ Encoding type of TE links: Ethernet, SONET, Lambda, etc.
 - □ Bandwidth of TE links: 1G, 2.4G, 10G, 40G, etc.
 - SRLG of TE links as well as nodes

determined by SPs' business strategy

so as to appropriately establish a GMPLS LSP across multiple domains, while keeping the topology information concealing.

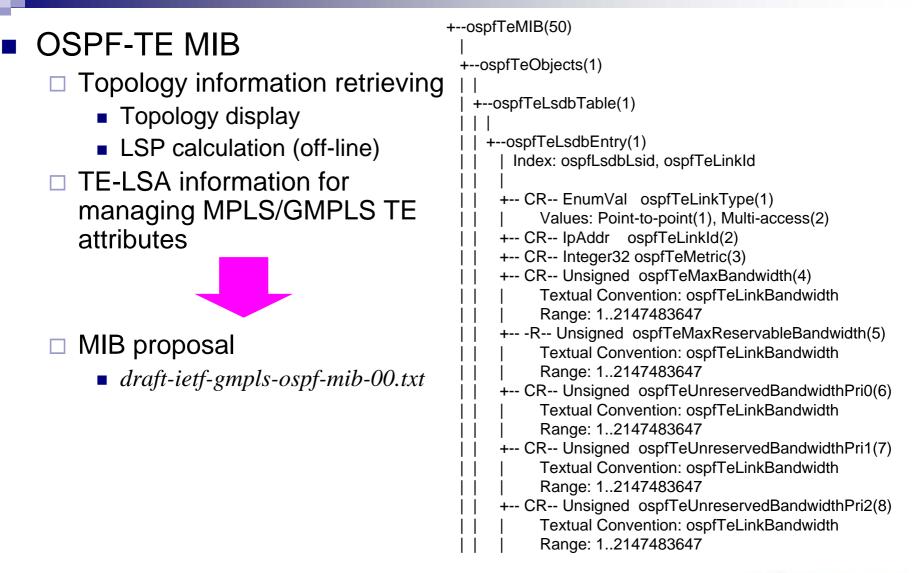
2006/9/12

GMPLS inter-domain requirements

EGP extensions for GMPLS

- Requirements for TE parameters in EGP and EGP redistribution
- GMPLS boarder nodes are required to announce the profile or an end-point (reachability) list consisting node IDs, interface addresses and interface IDs per below parameters;
 - Interface Switching capability
 - Bandwidth Encoding
 - SRLG (global view)
 - Protection type
- GMPLS inter-domain signaling for the support of TE
 - □ GMPLS per-domain basis/end-to-end path calculation support
 - □ Fast Recovery support
- GMPLS inter-domain TE Management
 - Requirements for fault management and TE MIB

Extensions to the OSPF Management Information Base in support of GMPLS


draft-ietf-ccamp-gmpls-ospf-mib-00.txt

Masanori Miyazawa Tomohiro Otani Thomas D. Nadeau Kenji Kumaki ma-miyazawa@kddilabs.jp otani@kddilabs.jp tnadeau@cisco.com ke-kumaki@kddi.com

OSPF-TE MIB

GLIF meeting, Tokyo

Conclusions

Inter-domain progress between US and Japan was introduced


- □ GMPLS E-NNI (RSVP-TE signaling & static routing)
- □ More advanced functionalities is under investigation
 - Dynamic routing exchange
 - GMPLS TE extension
 - L2SW capable support
- Related standardizing activities in IETF
- JGNII GMPLS network is ready for providing OXC path service for inter-domain connectivity

Thank you !!

GLIF meeting, Tokyo

