InterDomain Peering and Provisioning via GMPLS and Web Services

Presentation at GLIF Control Plane Working Group Sept 12, 2006 Tokyo, Japan

Tom Lehman

University of Southern California Information Sciences Institute (USC ISI)

Jerry Sobieski Mid-Atlantic Crossroads (MAX)

Control Plane Objectives

- Multi-Service, Multi-Domain, Multi-Layer, Multi-Vendor Provisioning
 - Basic capability is the provision of a "circuit" in above environment

• In addition, need control plane features for:

- AAA
- Scheduling

Easy APIs which combine multiple individual control plane actions into an application specific configuration (i.e., application specific topologies)

Key Control Plane Features (for Connection Control)

• Routing

 distribution of "data" between networks. The data that needs to be distributed includes reachability information, resource usages, etc

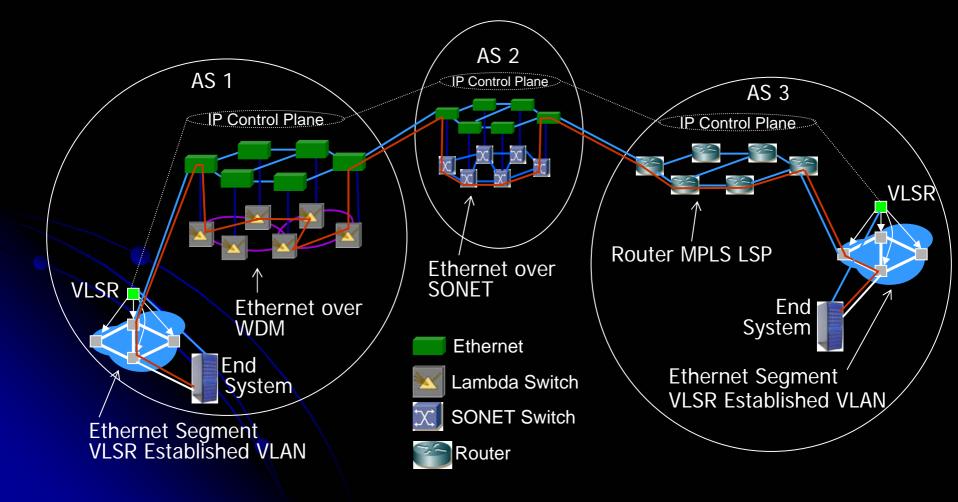
• Path computation

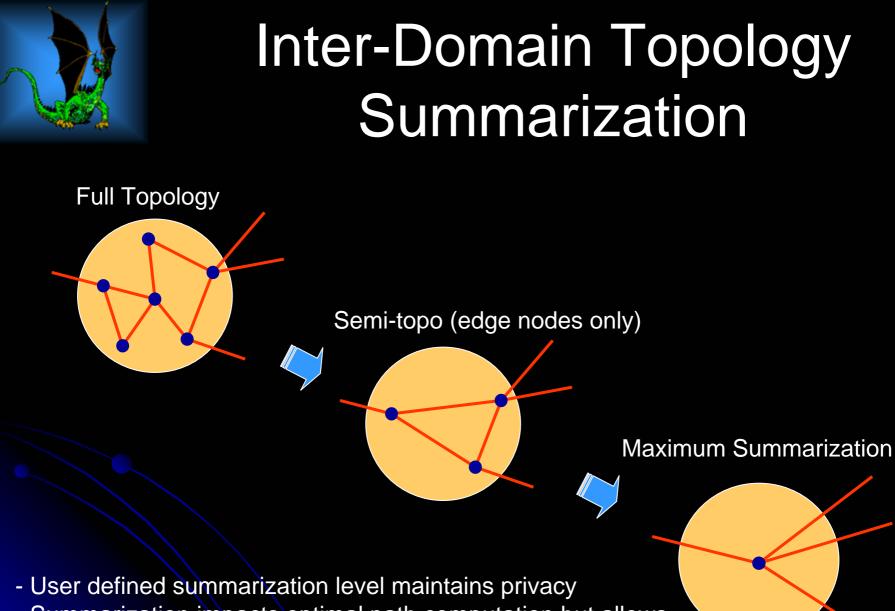
 the processing of information received via routing data to determining how to provision an end-to-end path. This is typically a Constrained Shortest Path First (CSPF) type algorithm for the GMPLS control planes. Web services based exchanges might employ a modified version of this technique or something entirely different.

• Signaling

 the exchange of messages to instantiate specific provisioning requests based upon the above routing and path computation functions. This is typically a RVSP-TE exchange for the GMPLS control planes. Web services based exchanges might employ a modified version of this technique or something entirely different.

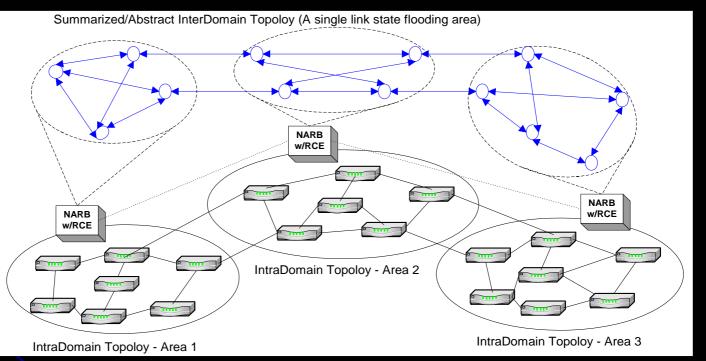
Key Control Plane Key Capabilities


Domain Summarization


- Ability to generate abstract representations of your domain for making available to others
- The type and amount of information (constraints) needed to be included in this abstraction requires discussion.
- Ability to quickly update this representation based on provisioning actions and other changes

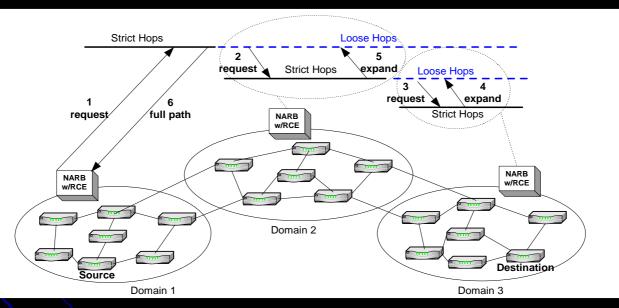
• Multi-layer "Techniques"

- Stitching: some network elements will need to map one layer into others, i.e., multi-layer adaptation
- In this context the layers are: PSC, L2SC, TDM, LSC, FSC
- Hierarchical techniques. Provision a circuit at one layer, then treat it as a resource at another layer. (i.e., Forward Adjacency concept)
- Multi-Layer, Multi-Domain Path Computation Algorithms
 - Algorithms which allow processing on network graphs with multiple constraints
 - Coordination between per domain Path Computation Elements


Heterogeneous Network Technologies Complex End to End Paths

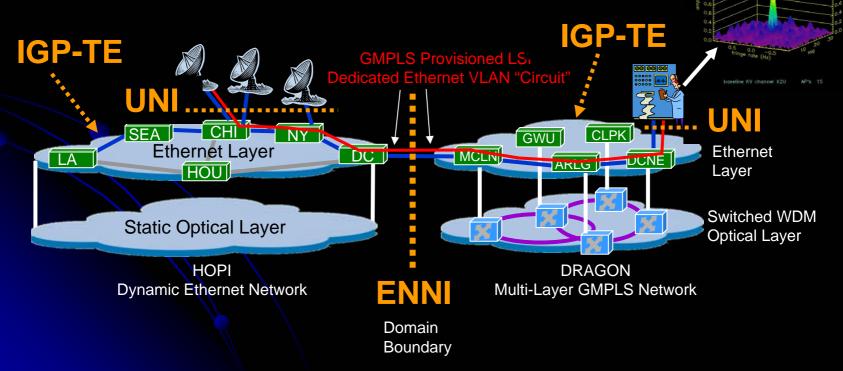
- Summarization impacts optimal path computation but allows the domain to choose (and reserve) an internal path

Interdomain Path Computation A Hierarchical Architecture



- NARB summarizes individual domain topology and advertise it globally using link-state routing protocol, generating an abstract topology.
- RCE computes partial paths by combining the abstract global topology and detailed local topology.
- NARB's assemble the partial paths into a full path by speaking to one another across domains.

E2E Multi-Domain Path Computation Scheme

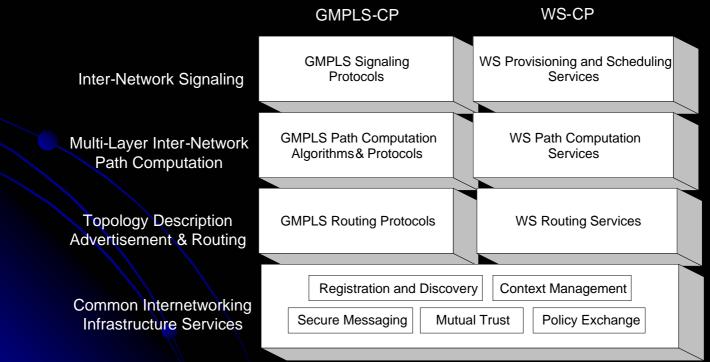

DRAGON mainly uses Recursive Per-Domain (RPD) interdomain path computation

- Full explicit path is obtained before signaling.
- Other supported schemes include Centralized path computation and Forward Per-Domain (FPD) path computation.

GMPLS Approach for DRAGON to HOPI

- GMPLS Multi-layer, Multi-Domain
- Ethernet Service Provisioning
- Dynamic dedicated VLAN based connections

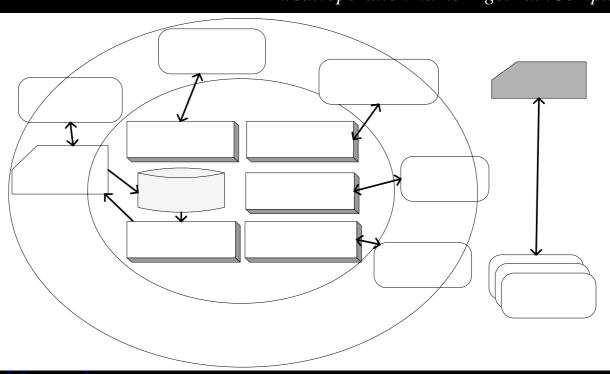
DRAGON Control Plane Key Components


- Network Aware Resource Broker NARB
 - Intradomain listener, Path Computation, Interdomain Routing
- Virtual Label Swapping Router VLSR
 - Open source protocols running on PC act as GMPLS network element (OSPF-TE, RSVP-TE)
 - Control PCs participate in protocol exchanges and provisions covered switch according to protocol events (PATH setup, PATH tear down, state query, etc)
 - Client System Agent CSA
 - End system or client software for signaling into network (UNI or peer mode)
- Application Specific Topology Builder ASTB
 - User Interface and processing which build topologies on behalf of users
 - Topologies are a user specific configuration of multiple LSPs

What About Web Services?

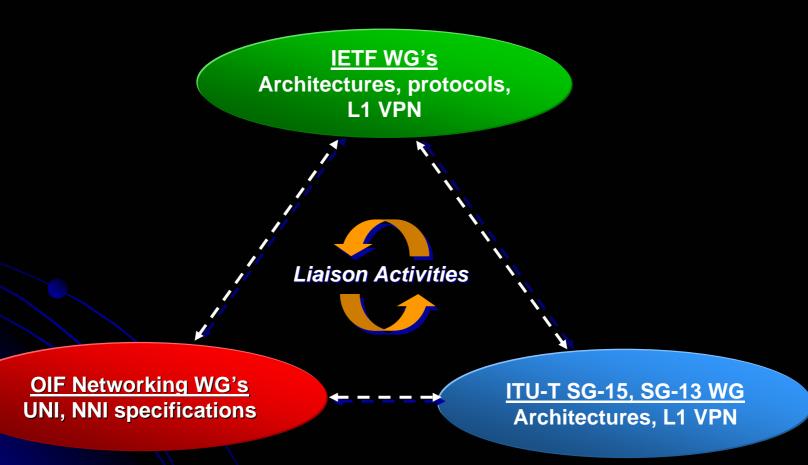
- There is value to capturing some of these control plane functions in the form of Web Services
- For DRAGON, that would mean putting a Web Service interface into our GMPLS control plane
 - Automatically processing of routing protocols
- The most basic web service needed is (abstracted) topology representation
 - Network Description Language (NDL) seems like a good method for topology (network graph) representations
 - Community needs to agree on a schema

GMPLS and WS Control Plane Overlap


- Idea All participating control planes must have a common set of topology discovery, routing, path computation and signaling functionality.
- Methodology Translate the "key" GMPLS-CP functions into WS-CP counterparts in web services notations

WS-CP Structure Web Service Wrappers

<wsdl:operation name="getNetworkTopology">
<wsdl:operation name="getAdjacentNetworkList">
<wsdl:operation name="getAdjacentNetworkList">
<wsdl:operation name="getPathComputationResult">
</wsdl:operation name="getPathComputationResult">
</wsd


<wsdl:operation name="createInternetworkPathComputationSession">
<wsdl:operation name="getRecursivePathComputationResult">

<wsdl:operation name="createPathReservation">
<wsdl:operation name="createAdaptationCrossConnect">

Standards Tracking

Multi-Layer / Multi-Domain Activities

Conclusions

- Any control plane will have to address routing, path computation, and signaling
- GMPLS represents the most advanced set of thinking, concepts, and capabilities in this area
 - Need to track and leverage these concepts, standards activities, and vendor implementations to the maximum extent possible
- There is value in capturing some of these functions via web services
 - Particularly topology descriptions
 - Need to agree on a schema (i.e., NDL)

Conclusions

- Expect a future environment where some peering networks will use GMPLS and some use Web Services
 - Should be able to accomplish multi-domain provisioning in this environment
 - This will allow interoperation between GMPLS and non-GMPLS networks (or Web Service and non-Web Service networks depending on your viewpoint)
- Most participants in this community have a per domain controller/manager
 - We should strive to define the InterDomain communications required for both:
 - GMPLS style control plane
 - Web Service style control plane
 - Future will likely be mixture of both

Thank You

Questions/Comments?:

Tom Lehman tlehman at isi.edu http://dragon.east.isi.edu or Jerry Sobieski jerrys at maxigapop.net http://dragon.maxgigapop.net