WAN Virtualization
Looking beyond Point to Point Circuits

Inder Monga
Chief Technologist & Area Lead
Energy Sciences Network
Lawrence Berkeley National Lab

Special Symposia on Cloud Computing
II. Network Virtualization

March 17th, OFC/NFOEC 2013
Fundamental Network Abstraction: a end-to-end circuit

At all layers of the network
Wavelength, PPP, MPLS LSP, L2TP, GRE, PW …

Switching points, store and forward, transformation …

Simple, Point-to-point, Provisionable
New Network Abstraction: “WAN Virtual Switch”

WAN Virtual Switch

Simple, Multipoint, Programmable

Configuration abstraction:
- Expresses desired behavior
- Hides implementation on physical infrastructure

It is not only about the concept, but implementation is key
Thought experiment: Build an N-port virtual switch for a collaboration

| Universities/physics groups | LHC Tier 2 Analysis Centers |

The LHC Open Network Environment (LHCONE)

<table>
<thead>
<tr>
<th>CERN → T1</th>
<th>miles</th>
<th>kms</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>350</td>
<td>565</td>
</tr>
<tr>
<td>Italy</td>
<td>570</td>
<td>920</td>
</tr>
<tr>
<td>UK</td>
<td>625</td>
<td>1000</td>
</tr>
<tr>
<td>Netherlands</td>
<td>625</td>
<td>1000</td>
</tr>
<tr>
<td>Germany</td>
<td>700</td>
<td>1185</td>
</tr>
<tr>
<td>Spain</td>
<td>850</td>
<td>1400</td>
</tr>
<tr>
<td>Nordic</td>
<td>1300</td>
<td>2100</td>
</tr>
<tr>
<td>USA – New York</td>
<td>3900</td>
<td>6300</td>
</tr>
<tr>
<td>USA - Chicago</td>
<td>4400</td>
<td>7100</td>
</tr>
<tr>
<td>Canada – BC</td>
<td>5200</td>
<td>8400</td>
</tr>
<tr>
<td>Taiwan</td>
<td>6100</td>
<td>9850</td>
</tr>
</tbody>
</table>

Source: Bill Johnston

© Inder Monga OFC/NFEC, 2013
Client-driven “Flow Routing” replaces static Routing policies

Science Flow1: $A \rightarrow B$, QoS, Label
Science Flow2: $\{A, \text{VLAN X}\} \rightarrow \{C, \text{VLAN Y}\}$
Science Flow3: $A \rightarrow B, C$

Combine distributed enforcement of Routing Policy to a single logical entity
Dynamic, multiple virtual switches for Cloud and other on-demand applications

Virtual Switches can be as dynamic as your Cloud
Recursive Nature: Horizontally and Vertically
Layer-based representation

- Creation of a programmable network provisioning layer
- Sits on top of the “network OS”
SC12 Demonstration Physical Topology

DTNs: Data Transfer Nodes

Ciena 5410 @Ciena booth
SRS Brocade @SCinet
NEC IP8800 @LBL

@ANL
@BNL

OSCARS virtual circuits
Summary

Motivation

• Powerful network abstraction makes it easier for complex application and collaboration interactions
 • Files/Storage

Simplicity

• Simplicity for the end-site
 • Works with off-the-shelf, open-source controller
 • Topology simplification

• Generic code for the network provider
 • Virtual switch can be layered over optical, routed or switched network elements
 • OpenFlow support needed on edge devices only, core stays same

• Programmability for applications
 • Allows end-sites to innovate and use the WAN effectively

Architecture

• OpenFlow at the edge to start with, can upgrade the core opportunistically