

GLIF 2010 @ CERN Challenge (13-14th October 2010)

NSI demo next year

11 months later....

- •OpenNSA
- •AutoBAHN
- OpenDRAC
- •GL/AIST
- •GL/KDDI
- •DynamicKL
- •OSCARS

How do we make this grow?

Quick Recap

Lawrence Berkeley National Laboratory

First NSI Service: Connection Service

Connection Service = creation, management and removal of Connections ("connection lifecycle")

Connection Service Protocol = set of messages exchanged over the NSI interface to manage the connection service

Leverages the recursive architecture of Network Service Agents to setup an end-to-end connection

Connection Service Protocol

Behavior of the following set of messages nailed down:

- Reserve
- Provision
- Release
- Cancel
- Query

Major difference from existing protocols

- Explicit provision expected from Requestor
- Duration of reservation separated from "actual use" of resources

Three important concepts

Recursive Framework of "requestor" and "provider" agents

Abstraction of multi-layer physical topology into "service topology"

"Composable" Services Model

Service Termination Points (STP) and Service Demarcation Points (SDP)

STP a = Network + 'a' (local identifier)

STPs represent the <u>external</u> interfaces of the network domain

An STP is a **symbolic** reference:

- a Network identifier string in the higher order portion
- a local STP identifier in the lower order portion

SDP = interconnected STPs

Abstracts the connectivity between two STPs

<u>Transfer Function (TF)</u> indicates the internal network capabilities

TF- Transfer Function

=Snet

Service Plane Topology: Service Termination Points

Service Plane represents the topological interconnects with STPs

Lawrence Berkeley National Laboratory

U.S. Department of Energy | Office of Science

Multiple combinable services over the same interface (future)

Basis for composable application-network service interactions

Composable Service

Ex. Automated GOLE service = Connection + Verification + Topology + Monitoring

Congruent with the end-to-end networking vision, and bringing campus $\leftarrow \rightarrow$ WAN together

The Base NSI protocol has the right elements to stir innovation at the service layer

Lawrence Berkeley National Laboratory

Gaps that need standards

Security Profile

Service Definition

Topology

NSI Connection-service Gap Analysis

Security Profile

- Define the basic security profile for NSI
 - Ability for network operators to define their own profile?
- Fields in place within the NSI WSDL
- Need operator validation for this specification
 - Part of an organizations operational procedures
 - Should be well documented and communicated to end-users

Service Definition

R&E Networks will continue to innovate

- 100GE
- Carrier Ethernet
- NDDI/OpenFlow

How do we define consistent end-to-end services that users can "ask" for?

- Service Definition tackles all technology parameters of a service that can be requested
- Concept is simple, but requires community consensus and procedures to agree on services, document etc.

Topology

NSI needs go beyond whats being done within NML working group (or DeTox?)

Need standard mechanisms/agreements for independent networks to :

- Represent the external topology in STP format
- Protocols and procedures to publish/share the topology

The intra-domain format can be NML and mapping from STP to NML are best practices that a group like GLIF can work on

NSI CS 2.0?

Request for enhancements to NSI Connection Service already there from experiments

- Point to multipoint
- Multipoint to multipoint
- Protection
- Performance measurement and management
- Scavenger service (ability to burst beyond my requested bandwidth)

Lawrence Berkeley National Laboratory

U.S. Department of Energy | Office of Science

GLIF activity, not standards

Mapping use cases to NSI protocol

- Map existing dynamic circuit use cases to NSI
- Demonstrate new use cases like Automated GOLE
- Gap Analysis

Integration with Network Operations

- How and when to use the Query function be used to solve connection problems?
- Best way to debug a multi-domain connection failure how do network engineers debug where the problem was?
 - Error notification needed in NSI?
- Data Plane errors get reported as a block fine tuning in the management plane
 - Notification service?

Investment in tools

The protocols need to be wrapped with usable UI tools for users to adopt

Can GLIF form a vehicle for a common set of open-source tools that can be leveraged?

• Federated software development

MEICAN - Mana	agement En 🗙 🕒	
← → C ⓒ m Concernent Marine Concernent Concernent Circuits New reservation Reservations Topologies MEICANS Domains Networks Devices	meican.cipo.rnp.br/main.php?app=init&controller=gui	My settings Help About Sign out (master) 14/09/2011 00:06
URNS Users Groups Access control	choose the device and port on the right pane.	Source Destination n Cipo caltech rk São Paulo Caltech Network e Switch SP ge-2/3/4 1-0-21 ow VLAN configuration Untagged Tagged 1781 Value: 700 - 719 Value: 1700 - 1900
	S Canc	el 🤞 Clear 🔍 Reset Zoom 🏓 Next

Lawrence Berkeley National Laboratory

U.S. Department of Energy | Office of Science

pology Tools Pane	Topology View Topology Format	
etwork Elements	Topology view Topology Format	
⇒ 2C - Ring Topology	Topology Description in NMWG Format for OSCARS	
Wireless Acess Router	xml version="1.0" encoding="UTF-8"?	
⇒ Server Cluster	<pre><ctrlplane:topology <="" pre="" xmlns:ctrlplane="http://ogf.org/schema/network/topology/ctrlPlane/20080828/"></ctrlplane:topology></pre>	
	<pre><cxsd:documentation lang="en" xmins:xsd="http://www.ws.org/2001/xmLschema">Topology Description: <ctrlplane:idcid>9NodeTopology</ctrlplane:idcid></cxsd:documentation></pre>	
10GB-optical-switch	<ctrlplane:domain id="testdomain-1"></ctrlplane:domain>	
⇒ host	<ctrlplane:node id="urn:ogf:network:domain=testdomain-1:node=node-1-4"></ctrlplane:node>	Ξ
-> 0 v 0 entired switch	<ctrlplane:address>10.1.1.4</ctrlplane:address>	
⇒ 8 x 8 optical switch	<ctrlplane:port id="urn:ogf:network:domain=testdomain-1:node=node-1-4:port=port-1"></ctrlplane:port>	
⇒ Wireless Access Point	<ctrlplane:capacity>100000000</ctrlplane:capacity>	
=> client	<ctrlplane:maximumreservablecapacity>100000000</ctrlplane:maximumreservablecapacity>	
	<ctrlplane:minimumreservablecapacity>1000000</ctrlplane:minimumreservablecapacity>	
Network Router	<ctrlplane:granularity>1000000</ctrlplane:granularity>	
	<pre><ctrlplane:link id="urn:ogf:network:domain=testdomain=1:node=node=1-4:port=port=1:link=link3"></ctrlplane:link></pre>	
, ociver	<pre></pre> CtriPiane:remoteLinkid>urn:ogi:network:testdomain-1:node-1-2:port-4:linki	
⇒ VLAN Router	<pre></pre>	
⇒ wireless Router	<pre>CtrlPlane:switchingcapabilitybescriptors/ <ctrlplane:switchingcaptune></ctrlplane:switchingcaptune></pre>	
	<pre></pre>	
etwork Element Actions 🗕	<ctrlplane:switchingcapabilityspecificinfo></ctrlplane:switchingcapabilityspecificinfo>	
	<ctrlplane:capability></ctrlplane:capability>	
Add Port Delete port	<ctrlplane:interfacemtu>9000</ctrlplane:interfacemtu>	
ulti Laver Actions	<pre><ctrlplane:vlanrangeavailability>3000-4000</ctrlplane:vlanrangeavailability></pre>	
	<ctrlplane:port id="urn:ogf:network:domain=testdomain-1:node=node-1-4:port=port-2"></ctrlplane:port>	
	<ctrlplane:capacity>100000000</ctrlplane:capacity>	
	<pre><ctrlplane:maximumreservablecapacity>100000000</ctrlplane:maximumreservablecapacity></pre>	
	<pre><ctrlplane:minimumreservablecapacity>1000000</ctrlplane:minimumreservablecapacity></pre>	
	<pre><ctrlplane:granularity>1000000</ctrlplane:granularity></pre>	
	<pre>cutriFiane:link id="urn:ogi:network:domain=testdomain=1:node=node=1-4:port=port=2:link=link2"></pre>	-

New

📑 Load

📄 Save

🔄 Export

📄 Import

🚱 Help

Delete

ropology control rune

Network Topology Wizard

Other important issues

Authentication and Authorization framework

- Standards
- Best Practices

Service Verification

Jerry (NORDUnet)/TERENA

More ideas?

In Conclusion

Tasks for the standard groups to tackle need to be prioritized

- NSI CS 1.0 the topmost priority
- Basic Security profile is equally important
- Topology a close second
- GLIF can help provide input to help prioritize other features

Best practices and tools leading towards operational deployment

- Open this for discussion
- GLIF Task force?

NSI presentation

Challenge at GLIF CERN

Birth of NSI

Painful, Guidance

Not ready for prime performance - but there is a lot of education required

What can it do today?

What does it need to do?

Gaps

Status of the specs (OGF Lyon) Topology Security profile Operational • Tools • Policy/SLAs

- Performance
- Debugging
- Fed. Soft. Dev.